Log in

Metal organic frameworks-derived sensing material of TiO2 thin film sensors for detection of NO2 gas

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The poor conductivity of oxides such as TiO2 is the big challenge that severely restricts their applications in the gas sesnor field. The rational design of their electronic structure and nano/micro structure is an effective approach to solve this problem. The spin coating approach was used to create a combined strategy of MOF-derived TiO2 thin films in this work. Various characterization methods, such as XRD, Raman, TEM, and XPS analyses, were used to examine the produced sensor films. XRD and Tem results suggest that MOF could significantly improve the structural and morphological properties of TiO2. SEM and TEM clearly shows that TiO2 have nanoparticles and nanosheets morphologies and the spherical shaped individual nanoparticles sizes in the range of 25–35 nm was found in the TiO2 sample. Chemiresistive gas sensors made from this MOF-TiO2 had much better NO2-sensing capability than pristine TiO2, as well as higher sensitivity (response of 84.6% under 1000 ppm) and faster response and recovery times (45 s/57 s). The unique porous structure with high specific surface area and plentiful accessible active sites with surface-adsorbed oxygen is attributed to the MOF-derived TiO2 improved sensing capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. P. Maria, M. Bruno, Thick-film sensors: an overview. Sens. Actuators 10, 65–82 (1986)

    Article  Google Scholar 

  2. S.K. Joshi, C.N.R. Rao, T. Tsuruto, S. Nagakura, Gas sensor Materials in ‘New Material’ (Narosa Publishing house, New Delhi, 1992), pp.1–37

    Google Scholar 

  3. M. Kulwicki Bernard, Humidity sensors. J. Am. Ceram. Soc. 74, 697–708 (1991)

    Article  Google Scholar 

  4. N. Yamazoe, Y. Shimizu, Humidity sensors: principles and applications. Sens Actuators 10, 379–398 (1986)

    Article  CAS  Google Scholar 

  5. M.J. Madou, S.R. Morrison, Chemical sensing with solid-state devices (Academic press Inc, San Diego, 1989)

    Google Scholar 

  6. A.M. Azad, S.A. Akbar, S.G. Mhaisalkar, L.D. Birkefeld, K.S. Goto, Solid-state gas sensors:a review. J. Electrochem. Soc. 139, 3690–3704 (1992)

    Article  CAS  Google Scholar 

  7. P.T. Moseley, Materials and Mechanism in semiconductor gas sensors: Technology, system and application (Gas sensor) (IOP Publishing, Bristol, 1990), pp.89–99

    Google Scholar 

  8. K. Tian, **ao-Xue Wang, Hua-Yao Li, Reddeppa Nadimicherla, **n Guo, Lotus pollen derived 3-dimensional hierarchically porous NiO microspheres for NO2 gas sensing. Sens. Actuators B-Chem. 227, 554–560 (2016)

    Article  CAS  Google Scholar 

  9. A. Sharma, M. Tomar, V. Gupta, Room temperature trace level detection of NO2 gas using SnO2 modified carbon nanotubes based sensor. J. Mater. Chem. 22, 23608–23616 (2012)

    Article  CAS  Google Scholar 

  10. A. Afzal, N. Cioffi, Luigi Sabbatini, Luisa Torsi, NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives. Sens. Actuators. B-Chem. 171–172, 25–42 (2012)

    Article  Google Scholar 

  11. M. Mosharrafhossainbhuiyan, T. Ueda, T. Ikegami, K. Ebihara, Gas sensing properties of metal doped WO3 thin film sensors prepared by pulsed laser deposition and DC sputtering process. Japanese J. Appl. Phys. 45(10), 8469–8472 (2006)

    Google Scholar 

  12. A. Srivastava, K. Rashmi, Jain, Study on ZnO-doped tin oxide thick film gas sensors. Mater. Chem. Phys 105, 385–390 (2007)

    Article  CAS  Google Scholar 

  13. M. Drobek, J. Kim, M. Bechelany, C. Vallicari, A. Julbe, S.S. Kim, MOF-Based Membrane Encapsulated ZnO Nanorodes for Enhanced Gas Sensor Selectivity. Appl. Mater. Interfaces 8, 8323–8328 (2016)

    Article  CAS  Google Scholar 

  14. H. Al-Kutubi, A. Dikhtiarenko, H.R. Zafarani, E.J.R. Sudhölter, J. Gascon, L. Rassaei, Facile formation of ZIF-8 thin films on ZnO nanorods. Cryst. Eng. Comm. 17, 5360 (2015)

    Article  CAS  Google Scholar 

  15. H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal-organic frameworks. Chem. Rev. 112, 673–674 (2012)

    Article  CAS  Google Scholar 

  16. J. Lee, J.H. Kwak, W. Choe, Evolution of form in metal–organic frameworks. Nat. Commun. 8, 14070 (2017)

    Article  CAS  Google Scholar 

  17. Y. Liu, Z. Tang, Multifunctional Nanoparticle@MOF Core-Shell Nanostructures. Adv. Mater. 25, 5819–5825 (2013)

    Article  CAS  Google Scholar 

  18. G. Ferey, C. Serre, Large breathing effects in three-dimensional porous hybridmatter: facts, analyses, rules and consequences. Chem. Soc. Rev. 38, 1380–1399 (2009)

    Article  CAS  Google Scholar 

  19. H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999)

    Article  CAS  Google Scholar 

  20. D. Britt, H. Furukawa, B. Wang, T.G. Glover, O.M. Yaghi, Highly efficient separation of carbon dioxide by a metal–organic framework replete with open metal sites, in Proceeding of the National Academy of Science USA. 106 20637–20640. (2009)

  21. Z. Wang, X. Li, H. Xu, Y. Yang, Y. Cui, H. Pan, Z. Wang, B. Chen, G. Qian, Porous anatase TiO2 constructed from a metal–organic framework for advanced lithium-ion battery anodes. J. Mater. Chem. A. 2, 12571–12575 (2014)

    Article  CAS  Google Scholar 

  22. M. Kumaresan, M. Venkatachalam, M. Saroja, P. Gowthaman, Significant enhancement in the hydrogen-sensing performance of polypyrrole/titanium oxide (PPy/TiO2) hybrid sensors by a chemical oxidation polymerization approach. J. Mater. Sci.: Mater. Electron. 31, 0957–4522 (2020)

    Google Scholar 

  23. M. Kumaresan, M. Venkatachalam, M. Saroja, P. Gowthaman, TiO2 nanofibers decorated with monodispersed WO3 heterostruture sensors for high gas sensing performance towards H2 gas. Inorg. Chem. Commun. 129, 108663 (2021)

    Article  CAS  Google Scholar 

  24. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, A novel microwave synthesis of nanocrystalline SnO2 and its structural optical and dielectric properties. J. Mater. Sci. Mater. Electron. 25, 730–735 (2014)

    Article  CAS  Google Scholar 

  25. E. Dauksta, A. Medvids, P. Onufrijevs, M. Shimomura, Y. Fukuda, K. Murakami, Laser- induced crystalline phase transition from rutile to anatase of niobium doped TiO2. Curr. Appl. Phys. 19(3), 351–355 (2019)

    Article  Google Scholar 

  26. R. BoopathiRaja, M. Parthibavarman, Hetero-structure arrays of MnCo2O4 nanoflakes@ nanowires grown on Ni foam: design, fabrication and applications in electrochemical energy storage. J. Alloy. Compd. 811, 152084 (2019)

    Article  CAS  Google Scholar 

  27. R. BoopathiRaja, M. Parthibavarman, A. Nishara Begum, Hydrothermal induced novel CuCo2O4 electrode for high performance supercapacitor applications. Vacuum 165, 96–104 (2019)

    Article  CAS  Google Scholar 

  28. Z. Wang, G. Men, R. Zhang, F. Gu, D. Han, Pd loading induced excellent NO2 gas sensing of 3DOM In2O3 at room temperature. Sens. Actuators B 263, 218–228 (2018)

    Article  CAS  Google Scholar 

  29. Y. Li, S. Wang, Y.-B. He, L. Tang, Y.V. Kaneti, W. Lv, Z. Lin, B. Li, Q.-H. Yang, F. Kang, Li-ion and Na-ion transportation and storage properties in various sized TiO2 spheres with hierarchical pores and high tap density. J. Mater. Chem. A 5(9), 4359–4367 (2017)

    Article  CAS  Google Scholar 

  30. X. Xu, P. Zhao, D. Wang, P. Sun, L. You, Y. Sun, X. Liang, F. Liu, H. Chen, G. Lu, Preparation and gas sensing properties of hierarchical flower-like In2O3 microspheres. Sens. Actuators B 176, 405–412 (2013)

    Article  CAS  Google Scholar 

  31. P. Li, H. Fan, Y. Cai, M. Xu, C. Long, M. Li, S. Lei, X. Zou, Phase transformation (cubic to rhombohedral): the effect on the NO2 sensing performance of Zn-doped flower-like In2O3 structures. RSC Adv. 4, 15161–15170 (2014)

    Article  CAS  Google Scholar 

  32. J.H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens. Actuators. B 140, 319–336 (2009)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MK, MV and MS, study conceptualization and writing (original draft) the manuscript. PG, and JG, funding this manuscript.

Corresponding author

Correspondence to M. Kumaresan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the research work reported in this manuscript.

Ethical approval

Research does not involving Human Participants and/or Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumaresan, M., Venkatachalam, M., Saroja, M. et al. Metal organic frameworks-derived sensing material of TiO2 thin film sensors for detection of NO2 gas. J Mater Sci: Mater Electron 34, 400 (2023). https://doi.org/10.1007/s10854-023-09830-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09830-9

Navigation