Log in

Study on the magnetic property of Fe–Si–B amorphous magnetic powder core coated with Al2O3/phosphoric acid–Al2O3 double layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To study the magnetic loss of electronic devices in high-frequency applications, Fe–Si–B magnetic powder cores coated with Al2O3 or phosphoric acid–alumina composite coating were prepared. In this paper, the effects of nano-Al2O3 powders and phosphoric acid with different contents on magnetic properties such as magnetic loss and permeability of magnetic materials were investigated. In addition, three kinds of amorphous Fe–Si–B powders (D50 = 21.78 μm, 11.59 μm, 5.554 μm) were mixed to find the best particle size ratio. The results show that the coating of mixture of 0.8 wt% phosphoric acid and 0.2 wt% Al2O3 achieves excellent magnetic properties (μ′ = 22.34; Pcv = 205.4 mW/cm3 measured at 1000 kHz, 20 mT) with a particle size ratio of 2:6:2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. L. Zhang, D. Li, Z. Lu, C. Lu, T. Liu, F. Guo et al., Novel Fe-based amorphous magnetic powder cores with ultra-low core losses. Sci. China Technol. Sci. 53(5), 1290–1293 (2010). https://doi.org/10.1007/s11664-020-08607-8

    Article  CAS  Google Scholar 

  2. C. Chang, Y. Dong, M. Liu, H. Guo, Q. **ao, Y. Zhang, Low core loss combined with high permeability for Fe-based amorphous powder cores produced by gas atomization powders. J. Alloys Compd. 766, 959–963 (2018). https://doi.org/10.1016/j.jallcom.2018.07.055

    Article  CAS  Google Scholar 

  3. Y. Han, F.L. Kong, F.F. Han, A. Inoue, S.L. Zhu, E. Shalaan et al., New Fe-based soft magnetic amorphous alloys with high saturation magnetization and good corrosion resistance for dust core application. Intermetallics 76, 18–25 (2016). https://doi.org/10.1016/j.intermet.2016.05.011

    Article  CAS  Google Scholar 

  4. X. Li, G. Lu, Z. Zhang, D. Ju, A. Makino, Bulk amorphous powder cores with low core loss by spark-plasma sintering Fe76Si9.6B8.4P6 amorphous powder with small amounts of SiO2. J. Alloys Compd. 647, 917–920 (2015). https://doi.org/10.1016/j.jallcom.2015.05.139

    Article  CAS  Google Scholar 

  5. Y. Zhang, Y. Dong, L. Liu, L. Chang, B. Zhou, Q. Chi et al., High filling alumina/epoxy nanocomposite as coating layer for Fe-based amorphous powder cores with enhanced magnetic performance. J. Mater. Sci. Mater. Electron. 30(16), 14869–14877 (2019). https://doi.org/10.1007/s10854-019-01858-0

    Article  CAS  Google Scholar 

  6. M. Strečková, J. Füzer, L. Kobera, J. Brus, M. Fáberová, R. Bureš et al., A comprehensive study of soft magnetic materials based on FeSi spheres and polymeric resin modified by silica nanorods. Mater. Chem. Phys. 147(3), 649–660 (2014). https://doi.org/10.1016/j.matchemphys.2014.06.004

    Article  CAS  Google Scholar 

  7. S. Choi, S. Lee, C.Y. Bon, K. Lee, S.J. Choi, S.-I. Yoo, Novel fabrication method for a high-performance soft-magnetic composite composed of alumina-coated Fe-based metal powder. J. Electron. Mater. 50(2), 664–674 (2020). https://doi.org/10.1007/s11664-020-08607-8

    Article  CAS  Google Scholar 

  8. K.-Y. Huang, Y.-Q. Dong, M. Liu, J.-H. Ren, S.-H. Lu, Z.-K. Zhao et al., Controllable SiO2 coating layer of FeSiBPNb amorphous powder cores with excellent soft magnetic properties. J. Iron Steel Res. Int. 25(6), 624–629 (2018). https://doi.org/10.1007/s42243-018-0093-4

    Article  Google Scholar 

  9. K. Geng, Y. **e, L. Yan, B. Yan, Fe–Si/ZrO2 composites with core-shell structure and excellent magnetic properties prepared by mechanical milling and spark plasma sintering. J. Alloys Compd. 718, 53–62 (2017). https://doi.org/10.1016/j.jallcom.2017.05.114

    Article  CAS  Google Scholar 

  10. H.-I. Hsiang, L.-F. Fan, J.-J. Hung, Phosphoric acid addition effect on the microstructure and magnetic properties of iron-based soft magnetic composites. J. Magn. Magn. Mater. 447, 1–8 (2018). https://doi.org/10.1016/j.jmmm.2017.08.096

    Article  CAS  Google Scholar 

  11. J. Chang, T. Zhan, X. Peng, J. Li, Y. Yang, J. Xu et al., Improved permeability and core loss of amorphous FeSiB/Ni–Zn ferrite soft magnetic composites prepared in an external magnetic field. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.161335

    Article  Google Scholar 

  12. L. **aolong, D. Yaqiang, L. Min, C. Chuntao, W. **n-Min, New Fe-based amorphous soft magnetic composites with significant enhancement of magnetic properties by compositing with nano-(NiZn)Fe2O4. J. Alloys Compd. 696, 1323–1328 (2017). https://doi.org/10.1016/j.jallcom.2016.11.241

    Article  CAS  Google Scholar 

  13. R. Nowosielski, J.J. Wysłocki, I. Wnuk, P. Gramatyka, Nanocrystalline soft magnetic composite cores. J. Mater. Process. Technol. 175(1–3), 324–329 (2006). https://doi.org/10.1016/j.jmatprotec.2005.04.017

    Article  CAS  Google Scholar 

  14. D. Chen, K. Li, H. Yu, J. Zuo, X. Chen, B. Guo et al., Effects of secondary particle size distribution on the magnetic properties of carbonyl iron powder cores. J. Magn. Magn. Mater. (2020). https://doi.org/10.1016/j.jmmm.2019.166062

    Article  Google Scholar 

  15. A.H. Taghvaei, H. Shokrollahi, M. Ghaffari, K. Janghorban, Influence of particle size and compaction pressure on the magnetic properties of iron-phenolic soft magnetic composites. J. Phys. Chem. Solids. 71(1), 7–11 (2010). https://doi.org/10.1016/j.jpcs.2009.08.008

    Article  CAS  Google Scholar 

  16. H.J. Woo, J.H. Ahn, C.P. Kim, D.H. Choi, S. Kim, B.W. Lee, Effect of the particle size classification of FeSiCrB amorphous soft magnetic composites to improve magnetic properties of power inductors. J. Noncryst. Solids (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121309

    Article  Google Scholar 

  17. J. Zhou, Y.F. Cui, H.S. Liu, W. Wang, K. Peng, Y.D. **ao, Magnetic properties of Fe78.4Si9.5B9Cu0.6Nb2.5 nanocrystalline alloy powder cores. J. Mater. Sci. 46(23), 7567–7572 (2011). https://doi.org/10.1007/s10853-011-5731-1

    Article  CAS  Google Scholar 

  18. H. Liang, L. Zhang, H. Wu, Exploration of twin-modified grain boundary engineering in metallic copper predominated electromagnetic wave absorber. Small 18(38), e2203620 (2022). https://doi.org/10.1002/smll.202203620

    Article  CAS  Google Scholar 

  19. H. Liang, H. **ng, M. Qin, H. Wu, Bamboo-like short carbon fibers@Fe3O4@phenolic resin and honeycomb-like short carbon fibers@Fe3O4@FeO composites as high-performance electromagnetic wave absorbing materials. Composites A (2020). https://doi.org/10.1016/j.compositesa.2020.105959

    Article  Google Scholar 

  20. D. Grybos, J.S. Leszczynski, M. Kwiecień, C. Swieboda, P. Lasak, W. Pluta et al., Properties of Fe-based nanocrystalline magnetic powder cores (MPC) and structure of particle size distribution (PSD). J. Electr. Eng. 69(2), 163–169 (2018). (Https://doi.org/10.2478/jee-2018-0020)

    Google Scholar 

  21. Y. Shi, Y. Zhang, Simulation of random packing of spherical particles with different size distributions. Appl. Phys. A 92(3), 621–626 (2008). https://doi.org/10.1007/s00339-008-4547-6

    Article  CAS  Google Scholar 

  22. H.I. Hsiang, K.H. Chuang, W.H. Lee, FeSiCr alloy powder to carbonyl iron powder mixing ratio effects on the magnetic properties of the iron-based alloy powder cores prepared using screen printing. Materials (Basel) (2021). https://doi.org/10.3390/ma14041034

    Article  Google Scholar 

  23. Y. Chen, L. Zhang, H. Sun, F. Chen, P. Zhang, X. Qu et al., Enhanced magnetic properties of iron-based soft magnetic composites with phosphate–polyimide insulating layer. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.152205

    Article  Google Scholar 

  24. A.H. Taghvaei, H. Shokrollahi, K. Janghorban, H. Abiri, Eddy current and total power loss separation in the iron–phosphate–polyepoxy soft magnetic composites. Mater. Des. 30(10), 3989–3995 (2009). https://doi.org/10.1016/j.matdes.2009.05.026

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (Grant No. 2021YFB3502400), the National Natural Science Foundation of China (No. 51872004), the Key Research and Development Plan of Anhui Province (Nos. 201904a05020038, 202003a05020051).

Author information

Authors and Affiliations

Authors

Contributions

YZ: Conceptualization, Formal analysis, Data curation, Writing—original draft, Visualization. CZ: Methodology, Validation. XL: Funding acquisition. XK: Resources, Writing—review and editing, Supervision. SF: Formal analysis, Investigation. QL: Project administration. WS: Funding acquisition.

Corresponding author

Correspondence to Xucai Kan.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Zhang, C., Liu, X. et al. Study on the magnetic property of Fe–Si–B amorphous magnetic powder core coated with Al2O3/phosphoric acid–Al2O3 double layer. J Mater Sci: Mater Electron 34, 292 (2023). https://doi.org/10.1007/s10854-022-09755-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09755-9

Navigation