Log in

Highly conductive films sintered by Au–Ag nanoparticles ink at low temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Conducting films are becoming increasingly crucial for the electronics industry with applications in various technologies including high-power microelectronic packaging, photovoltaics, and flexible displays. The films with high conductivity were normally fabricated by sintering of printed inks with micrometer size particles. However, the resolution of printed pattern and high sintering temperature limit its application due to the particle size. Herein, we report a stable bimetallic alloy nanoparticle (Au–Ag) sintering inks with low sintering temperature (450 °C). The fabricated films have low resistivity (4.13 × 10–8 Ω·m), which is similar with that of bulk Au films (2.4 × 10–8 Ω·m) and show great adhesion on glass substrates. Film porosity is extremely low, with a maximum transmittance of only 0.1% in the wavelength range of 340 nm-870 nm. The Au–Ag nanoparticles sintering behavior was also characterized systematically by both scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was observed that the sintering process could be divided into three stages. This work indicates that this preparation approach of conductive film shows potential in the fabrication of highly integrated electronic devices by ink printing method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J. Perelaer, U.S. Schubert, J. Mater Res. 28, 564–573 (2013)

    Article  CAS  Google Scholar 

  2. A.A. Arbab, A.A. Memon, K.C. Sun, J.Y. Choi, N. Mengal, I.A. Sahito, S.H. Jeong, J. Colloid Interface Sci. 539, 95–106 (2019)

    Article  CAS  Google Scholar 

  3. J. Perelaer, P.J. Smith, D. Mager, D. Soltman, S.K. Volkman, V. Subramanian, J.G. Korvink, U.S. Schubert, J. Mater Chem. 20, 8446–8453 (2010)

    Article  CAS  Google Scholar 

  4. T. Kawase, S. Moriya, C.J. Newsome, T. Shimoda, Jpn. J. Appl Phys. 44, 3649–3658 (2005)

    Article  CAS  Google Scholar 

  5. T.N. Chi, H.H. Phan, J. Perumal, D.P. Kim, Chem Commun 47, 3484–3486 (2011)

    Article  Google Scholar 

  6. K. Woo, Y. Kim, B. Lee, J. Kim, J. Moon, A.C.S. Appl, Mater. Interfaces. 3, 2377–2382 (2011)

    Article  CAS  Google Scholar 

  7. L.R. Yao, F.H. Lu, Int. J. Appl. Ceram. Technol. 10, 51 (2015)

    Article  Google Scholar 

  8. T.G. Kim, H.J. Park, K. Woo, S. Jeong, Y. Choi, S.Y. Lee, A.C.S. Appl, Mater. Interfaces 10, 1059–1066 (2018)

    Article  CAS  Google Scholar 

  9. J. Perelaer, B.J. de Gans, U.S. Schubert, Adv. Mater. 18, 2101–2104 (2006)

    Article  CAS  Google Scholar 

  10. S. Sivaramakrishnan, P.J. Chia, Y.C. Yeo, L.L. Chua, P.K.H. Ho, Nat. Mater. 6, 149–155 (2007)

    Article  CAS  Google Scholar 

  11. A.J. Kell, C. Paquet, O. Mozenson, I. Djavani-Tabrizi, B. Deore, X.Y. Liu, G.P. Lopinski, R. James, K. Hettak, J. Shaker, A. Momciu, J. Ferrigno, O. Ferrand, J.X. Hu, S. Lafreniere, P.R.L. Malenfant, ACS Appl. Mater. Interfaces 9, 17227–17238 (2017)

    Article  Google Scholar 

  12. S.P. Chen, Z.K. Kao, J.L. Lin, Y.C. Liao, A.C.S. Appl, Mater. Interfaces. 4, 7063–7067 (2012)

    Google Scholar 

  13. Z.N. Zhu, J.H. Zhang, Z.W. Zhou, H.L. Ning, W. Cai, J.L. Wei, S.X. Zhou, R.H. Yao, X.B. Lu, J.B. Peng, A. Simple, A.C.S. Appl, Mater. Interfaces. 11, 5193–5199 (2019)

    Article  CAS  Google Scholar 

  14. R. Singh, E. Singh, H.S. Nalwa, RSC Adv. 7, 48597–48630 (2017)

    Article  CAS  Google Scholar 

  15. A. Kamyshny, S. Magdassi, Chem. Soc. Rev. 48, 1712–1740 (2019)

    Article  CAS  Google Scholar 

  16. A. Nathan, A. Ahnood, M.T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D.P. Chu, A.J. Flewitt, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A.J. Amaratunga, W.I. Milne, Proc. IEEE 100, 1486–1517 (2012)

    Article  Google Scholar 

  17. A. Maattanen, P. Ihalainen, P. Pulkkinen, S.X. Wang, H. Tenhu, J. Peltonen, A.C.S. Appl, Mater. Interfaces. 4, 955–964 (2012)

    Article  Google Scholar 

  18. S. Magdassi, M. Grouchko, A. Kamyshny, Mater. 3, 4626–4638 (2010)

    Article  CAS  Google Scholar 

  19. N.P. Bacalzo, L.P. Go, C.J. Querebillo, P. Hildebrandt, F.T. Limpoco, E.P. Enriquez, A.C.S. Appl, Nano. Mater. 1, 1247–1256 (2018)

    CAS  Google Scholar 

  20. A. Shankar, E. Salcedo, A. Berndt, D. Choi, J.E. Ryu, Adv. Compos. Hybrid Mater. 1, 193–198 (2018)

    Article  CAS  Google Scholar 

  21. Z.P. Wu, S.Y. Shan, S.Q. Zang, C.J. Zhong, Acc. Chem. Res. 53, 2913–2924 (2020)

    Article  CAS  Google Scholar 

  22. A. Heuer-Jungemann, N. Feliu, I. Bakaimi, M. Hamaly, A. Alkilany, I. Chakraborty, A. Masood, M.F. Casula, A. Kostopoulou, E. Oh, K. Susumu, M.H. Stewart, I.L. Medintz, E. Stratakis, W.J. Parak, A.G. Kanaras, Chem. Rev. 119, 4819–4880 (2019)

    Article  CAS  Google Scholar 

  23. V. Amendola, R. Pilot, M. Frasconi, O.M. Marago, M.A. Iati, J. Phys. Condens. Matter 29, 203002 (2017)

    Article  Google Scholar 

  24. J. Wilcoxon, J. Phys. Chem. B. 113, 2647–2656 (2009)

    Article  CAS  Google Scholar 

  25. T.H. Chuang, H.C. Wang, C.H. Tsai, C.C. Chang, C.H. Chuang, J.D. Lee, H.H. Tsai, Scripta. Mater. 67, 605–608 (2012)

    Article  CAS  Google Scholar 

  26. L.Z. Tang, L. Zhu, F. Tang, C. Yao, J. Wang, L.D. Li, Langmuir 34, 14570–14576 (2018)

    Article  CAS  Google Scholar 

  27. B.Y. Ahn, E.B. Duoss, M.J. Motala, X.Y. Guo, S.I. Park, Y.J. **ong, J. Yoon, R.G. Nuzzo, J.A. Rogers, J.A. Lewis, Science 323, 1590–1593 (2009)

    Article  CAS  Google Scholar 

  28. M. Wu, B.P. Lin, Y. Cao, J.G. Song, Y. Sun, H. Yang, X.Q. Zhang, J. Mater. Sci: Mater Electron. 24, 4913–4918 (2013)

    CAS  Google Scholar 

  29. J.J. Liang, K. Tong, Q.B. Pei, Adv. Mater. 28, 5986 (2016)

    Article  CAS  Google Scholar 

  30. M. Grouchko, A. Kamyshny, C.F. Mihailescu, D.F. Anghel, S. Magdassi, ACS Nano 5, 3354–3359 (2011)

    Article  CAS  Google Scholar 

  31. I.J. Fernandes, A.F. Aroche, A. Schuck, P. Lamberty, C.R. Peter, W. Hasenkamp, T. Rocha, Sci. Rep. 10, 8878 (2020)

    Article  CAS  Google Scholar 

  32. M. Brust, C.J. Kiely, Colloids. Surf. A. 202, 175–186 (2002)

    Article  CAS  Google Scholar 

  33. R.T. Bratfalean, B.I. Cozar, C. Nut, Plasmonics 16, 891–903 (2021)

    Article  CAS  Google Scholar 

  34. A. Lesuffleur, L.K.S. Kumar, A.G. Brolo, K.L. Kavanagh, R. Gordon, J. Phys. Chem. C. 111, 2347–2350 (2007)

    Article  CAS  Google Scholar 

  35. D. Moldovan, V. Yamakov, D. Wolf, S.R. Phillpot, Phys. Rev. Lett. 89, 206101 (2002)

    Article  Google Scholar 

  36. E.R. Leite, T.R. Giraldi, F.M. Pontes, E. Longo, A. Beltran, J. Andres, Appl. Phys. Lett. 83, 1566–1568 (2003)

    Article  CAS  Google Scholar 

  37. J. Scholhammer, B. Baretzky, W. Gust, E. Mittemeijer, B. Straumal, Interface. Sci. 9, 43–53 (2001)

    Article  CAS  Google Scholar 

  38. B.B. Straumal, O.A. Kogtenkova, A.S. Gornakova, V.G. Sursaeva, B. Baretzky, J. Mater. Sci. 51, 382–404 (2016)

    Article  CAS  Google Scholar 

  39. V.G. Sursaeva, B.B. Straumal, A.S. Gornakova, L.S. Shvindlerman, G. Gottstein, Acta Mater. 56, 2728–2734 (2008)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant Numbers 51771046, 51971055).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by ZZ, JL, and TL. The manuscript was written by ZP and WT and then all authors commented on it. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wenhuai Tian or Zhipeng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 180 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Li, J., Liu, T. et al. Highly conductive films sintered by Au–Ag nanoparticles ink at low temperature. J Mater Sci: Mater Electron 34, 111 (2023). https://doi.org/10.1007/s10854-022-09649-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09649-w

Navigation