Log in

AC conductivity and dielectric investigations of amorphous manganese oxide and amorphous manganese oxide/conducting polymer nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Simple redox reactions at ambient conditions have prepared manganese dioxide (MnO2) and MnO2/conducting polymer nanocomposites. Kee** the aqueous KMnO4 solution as a manganese source, MnO2, MnO2/polyaniline, and MnO2/polypyrrole nanocomposites are synthesized using ethylene glycol, aniline, and pyrrole as reducing agents, respectively. The powder X-ray diffraction analysis reveals that the prepared MnO2 and MnO2-based nanocomposites are amorphous. Fourier transform infrared spectral measurements further confirm the presence of functional groups. The change in the morphology of all samples was observed through scanning electron microscopy. The AC electrical conductivity and dielectric measurements are taken in the applied frequency range of 10 Hz–100 MHz. With the help of these experimental parameters, the electrical properties of MnO2, MnO2/polyaniline, and MnO2/polypyrrole nanocomposites are analyzed. Out of all prepared nanocomposites, the results signpost better conductivity for Ppy-MnO2 nanocomposite, and its conductivity enhances with the rise in applied frequency. Based on the observations, manganese-based conducting polymer composites can be used to develop electronic device-level applications. Also, the preparation method adopted in this study is simple, and these materials can produce on a large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. D.R. Rolison, R.W. Long, J.C. Lytle, A.E. Fischer, C.P. Rhodes, T.M. McEvoy, M.E. Bourga, A.M. Lubers, Chem. Soc. Rev. 38, 226–252 (2009)

    Article  CAS  Google Scholar 

  2. L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38, 2520–2531 (2009)

    Article  CAS  Google Scholar 

  3. C. Li, H. Bai, G. Shi, Chem. Soc. Rev. 38, 2397–2409 (2009)

    Article  CAS  Google Scholar 

  4. P. Ragupathy, D.H. Park, G. Campet, H.N. Vasan, S.J. Hwang, J.H. Choy, N. Munichandraiah, J. Phys. Chem. C 113, 6303–6309 (2009)

    Article  CAS  Google Scholar 

  5. S. Devaraj, N. Munichandraiah, J. Phys. Chem. C 112, 4406–4417 (2008)

    Article  CAS  Google Scholar 

  6. P. Ragupathy, H.N. Vasan, N. Munichandraiah, J Electrochem. Soc. 155, A34–A40 (2008)

    Article  CAS  Google Scholar 

  7. Y.A. Kulakarni, M.R. Jagadeesh, S. Jambaladinni, H.M. Suresh Kumar, M.S. Vasanthkumar, S. Shivakumara, J. Mater. Sci.: Mater. Electron. 32, 3352–3360 (2021)

    CAS  Google Scholar 

  8. Y.A. Kulakarni, M.R. Jagadeesh, S. Jambaladinni, H.M. Suresh Kumar, M.S. Vasanthkumar, S. Shivakumara, J. Mater. Sci: Mater. Electron. 31, 7226–7231 (2020)

    CAS  Google Scholar 

  9. R.E. John, A. Chandran, M. Samuel, M. Thomas, K.C. George, Physica E 116, 113720 (2020)

    Article  CAS  Google Scholar 

  10. S. Shivakumara, N. Munichandraiah, J. Alloys Compd. 787, 1044–1050 (2019)

    Article  CAS  Google Scholar 

  11. S. Palsaniya, H.B. Nemade, A.K. Dasmahapatra, Carbon 150, 179–190 (2019)

    Article  CAS  Google Scholar 

  12. H. Khan, K. Malook, M. Shah, J. Mater. Sci: Mater. Electron. 29, 1990–1998 (2018)

    Google Scholar 

  13. V.C. Lokhande, A.C. Lokhande, C.D. Lokhande, J.H. Kim, T. Ji, J. Alloys Compd. 682, 381–402 (2016)

    Article  CAS  Google Scholar 

  14. N.B. Rithin Kumar, V. Crasta, B.M. Praveen, M. Kumar, Nanotechnol. Rev. 4, 457–467 (2015)

    Article  Google Scholar 

  15. E. Veena Gopalan, K.A. Malini, S. Saravanan, D. Sakthi Kumar, Y. Yoshidaand, M.R. Anantharaman, J. Phys. D: Appl. Phys. 41, 185005 (2008)

    Article  Google Scholar 

  16. S. Capaccioli, M. Lucchesi, P.A. Rolla, G. Ruggeri, J. Phys. : Condens. Matter 10, 5595–5617 (1998)

    CAS  Google Scholar 

  17. A. Vijayamari, K. Sadayandi, S. Sagadevan, P. Singh, J. Mater. Sci.: Mater. Electron. 28, 2739–2746 (2017)

    CAS  Google Scholar 

  18. N. Sohal, B. Maity, N.P. Shetti, S. Basu, ACS Appl. Nano Mater. 4, 2285–2302 (2021)

    Article  CAS  Google Scholar 

  19. N. Sohal, B. Maity, S. Basu, ACS Appl. Bio Mater. 4, 5158–5168 (2021)

    Article  CAS  Google Scholar 

  20. M. Huang, F. Li, F. Dong, Y.X. Zhang, L.L. Zhang, J. Mater. Chem. A 3, 21380–21423 (2015)

    Article  CAS  Google Scholar 

  21. P. Sen, A. De, A.D. Chowdhury, S.K. Bandyopadhyay, N. Agnihotri, M. Mukherjee, Electrochim. Acta 108, 265–273 (2013)

    Article  CAS  Google Scholar 

  22. C.X. Guo, M. Wang, T. Chen, X.W. Lou, C.M. Li, Adv. Energy Mater. 1, 736–741 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Taif university Researchers Supporting Project number (TURSP-2020/44), Taif University, Taif, Saudi Arabia. The authors thank the Bapuji Institute of Engineering and Technology, Davanagere, for providing a laboratory facility.

Funding

This research has been funded by Taif university Researchers Supporting Project number (TURSP-2020/44), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

The conceptualization and Methodology of this research work were done by the authors YAK and MRJ. Material preparation and Material Characterization were done by ASAA and BMP and YAK performed collection and analysis, The first draft of the manuscript was written by MRJ. Manuscript revision and editing AA, AA. The final draft was supervised and reviewed by BMP and ASAA. Finally, all authors read and approved the final manuscript. Revision and Editing of the manuscript DGPK, MSV, SS.

Corresponding author

Correspondence to M. R. Jagadeesh.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.”

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulakarni, Y.A., Jagadeesh, M.R., Almalki, A.S.A. et al. AC conductivity and dielectric investigations of amorphous manganese oxide and amorphous manganese oxide/conducting polymer nanocomposites. J Mater Sci: Mater Electron 34, 176 (2023). https://doi.org/10.1007/s10854-022-09626-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09626-3

Navigation