Log in

A novel porous rod with nanosphere CuS2/NiFe2Onanocomposite for low-cost high-performance energy storage system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Spinel ferrites have lately gained popularity owing to their unique properties like high electrochemical stability, redox states & pseudocapacitive activity for supercapacitors applications. In present study, firstly rationally designed CuS2/NiFe2O4 nanostructure is fabricated using a simple and efficient single step hydrothermal route. The resultant CuS2/NiFe2O4 outperforms the capacitance efficiency of the CuS2 and NiFe2O4 due to the synergistic effect. The CuS2/NiFe2O4 nanocomposite responses greater specific capacitance of 1329.54 F g−1 at 1.0 A g−1, & nanocomposite electrode employed more than 96.21% of its capacitance around 5 A g−1 even after 5000 cycles. Hence, electrochemical efficiency could be boast up by tailoring in the morphology, surface interfaces and creation of oxygen vacancy. Therefore, this hybrid material might also be employed for water splitting catalysts, Na-ion hybrid capacitors, and other difficult energy storage and conversion devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Q. Li, G. Yang, Y. Chu, C. Tan, Q. Pan, F. Zheng, Y. Li, S. Hu, Y. Huang, H. Wang, Enhanced electrochemical performance of Ni-rich cathode material by N-doped LiAlO2 surface modification for lithium-ion batteries. Electrochim Acta 372, 137882 (2021). https://doi.org/10.1016/J.ELECTACTA.2021.137882

    Article  CAS  Google Scholar 

  2. G. Zhao, X. Wang, M. Negnevitsky, H. Zhang, A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles. J. Power Sources. 501, 230001 (2021). https://doi.org/10.1016/J.JPOWSOUR.2021.230001

    Article  CAS  Google Scholar 

  3. D. Zhao, Q. Hao, C. Xu, Facile fabrication of composited Mn3O4/Fe3O4 nanoflowers with high electrochemical performance as anode material for lithium ion batteries. Electrochim Acta 180, 493–500 (2015). https://doi.org/10.1016/J.ELECTACTA.2015.08.146

    Article  CAS  Google Scholar 

  4. J. Bai, B. Zhao, J. Zhou, Z. Fang, K. Li, H. Ma, J. Dai, X. Zhu, Y. Sun, Improved electrochemical performance of ultrathin MoS2 Nanosheet/Co composites for lithium-ion battery anodes. ChemElectroChem 6, 1930–1938 (2019). https://doi.org/10.1002/CELC.201801891

    Article  CAS  Google Scholar 

  5. K.V. Sankar, R.K. Selvan, The preparation of MnFe2O4 decorated flexible graphene wrapped with PANI and its electrochemical performances for hybrid supercapacitors. RSC Adv. 4, 17555–17566 (2014). https://doi.org/10.1039/C3RA47681B

    Article  CAS  Google Scholar 

  6. X. Ding, D. Liang, H. Zhao, Enhanced electrochemical performance promoted by tin in silica anode materials for stable and high-capacity lithium-ion batteries. Materials 14, 1071 (2021). https://doi.org/10.3390/MA14051071

    Article  CAS  Google Scholar 

  7. Z. Ma, H.G. Xue, S.P. Guo, Recent achievements on sulfide-type solid electrolytes: crystal structures and electrochemical performance. J. Mater. Sci. 53, 3927–3938 (2018). https://doi.org/10.1007/S10853-017-1827-6/TABLES/5

    Article  CAS  Google Scholar 

  8. Y. Long, J. Yeng, X. Gao, X. Xu, W. Fan, J. Yang, S. Hou, Y. Qian, Solid-solution anion-enhanced electrochemical performances of metal sulfides/selenides for sodium-ion capacitors: the case of FeS2–xSex. ACS Appl. Mater. Interfaces. 10, 10945–10954 (2018). https://doi.org/10.1021/ACSAMI.8B00931/ASSET/IMAGES/LARGE/AM-2018-00931W_0005.JPEG

    Article  CAS  Google Scholar 

  9. J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X. Wen Lou, J. Jiang, J.P. Liu, X.T. Huang, Y.Y. Li, C.Z. Yuan, X.W. Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24, 5166–5180 (2012). https://doi.org/10.1002/ADMA.201202146

    Article  CAS  Google Scholar 

  10. M.F. El-Kady, M. Ihns, M. Li, J.Y. Hwang, M.F. Mousavi, L. Chaney, A.T. Lech, R.B. Kaner, Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc. Natl. Acad. Sci. USA 112, 4233–4238 (2015). https://doi.org/10.1073/PNAS.1420398112/SUPPL_FILE/PNAS.1420398112.SM01.WMV

    Article  CAS  Google Scholar 

  11. M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 71(7), 1–13 (2016). https://doi.org/10.1038/ncomms12647

    Article  Google Scholar 

  12. M. Cakici, K.R. Reddy, F. Alonso-Marroquin, Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes. Chem. Eng. J. 309, 151–158 (2017). https://doi.org/10.1016/J.CEJ.2016.10.012

    Article  CAS  Google Scholar 

  13. J.S.M. Lee, M.E. Briggs, C.C. Hu, A.I. Cooper, Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers. Nano Energy 46, 277–289 (2018). https://doi.org/10.1016/J.NANOEN.2018.01.042

    Article  CAS  Google Scholar 

  14. E. Lim, C. Jo, J. Lee, A mini review of designed mesoporous materials for energy-storage applications: from electric double-layer capacitors to hybrid supercapacitors. Nanoscale 8, 7827–7833 (2016). https://doi.org/10.1039/C6NR00796A

    Article  CAS  Google Scholar 

  15. V.A. Ketsko, E.N. Beresnev, M.A. Kop’eva, L.V. Elesina, A.I. Baranchikov, A.I. Stognii, A.V. Trukhanov, N.T. Kuznetsov, Specifics of pyrohydrolytic and solid-phase syntheses of solid solutions in the (MgGa2O4)x(MgFe2O4)1–x system. Russ. J. Inorg. Chem. 55(3), 427–429 (2010). https://doi.org/10.1134/S0036023610030216

    Article  CAS  Google Scholar 

  16. D.A. Vinnik, V.E. Zhivulin, D.P. Sherstyuk, A.Y. Starikov, P.A. Zezyulina, S.A. Gudkova, D.A. Zherebtsov, K.N. Rozanov, S.V. Trukhanov, K.A. Astapovich, A.S.B. Sombra, D. Zhou, R.B. Jotania, C. Singh, A.V. Trukhanov, Ni substitution effect on the structure, magnetization, resistivity and permeability of zinc ferrites. J. Mater. Chem. C. 9, 5425–5436 (2021). https://doi.org/10.1039/D0TC05692H

    Article  CAS  Google Scholar 

  17. D.A. Vinnik, V.E. Zhivulin, D.P. Sherstyuk, A.Y. Starikov, P.A. Zezyulina, S.A. Gudkova, D.A. Zherebtsov, K.N. Rozanov, S.V. Trukhanov, K.A. Astapovich, V.A. Turchenko, A.S.B. Sombra, D. Zhou, R.B. Jotania, C. Singh, A.V. Trukhanov, Electromagnetic properties of zinc–nickel ferrites in the frequency range of 0.05–10 GHz. Mater. Today Chem. 20, 100460 (2021). https://doi.org/10.1016/J.MTCHEM.2021.100460

    Article  CAS  Google Scholar 

  18. Y. Slimani, M.A. Almessiere, S. Guner, B. Aktas, S.E. Shirsath, M.V. Silibin, A.V. Trukhanov, A. Baykal, Impact of Sm3+ and Er3+ cations on the structural, optical, and magnetic traits of spinel cobalt ferrite nanoparticles: comparison investigation, ACS. Omega 7, 6292–6301 (2022). https://doi.org/10.1021/ACSOMEGA.1C06898/ASSET/IMAGES/LARGE/AO1C06898_0009.JPEG

    Article  CAS  Google Scholar 

  19. M. Hassan, Y. Slimani, M.A. Gondal, M.J.S. Mohamed, S. Güner, M.A. Almessiere, A.M. Surrati, A. Baykal, S. Trukhanov, A. Trukhanov, Structural parameters, energy states and magnetic properties of the novel Se-doped NiFe2O4 ferrites as highly efficient electrocatalysts for HER. Ceram. Int. 48, 24866–24876 (2022). https://doi.org/10.1016/J.CERAMINT.2022.05.140

    Article  CAS  Google Scholar 

  20. L. Lyu, C.W. Kim, K. Dong Seong, J. Kang, S. Liu, Y. Yamauchi, Y. Piao, Defect engineering induced heterostructure of Zn-birnessite@spinel ZnMn2O4 nanocrystal for flexible asymmetric supercapacitor. Chem. Eng. J. 430, 133115 (2022). https://doi.org/10.1016/J.CEJ.2021.133115

    Article  CAS  Google Scholar 

  21. D.K. Km, J.G. Hong, J. Kweon, G. Saeed, K.H. Kim, D. Lee, M. Chang Kang, Spinel NiCo2O4 nanowires synthesized on Ni foam as innovative binder-free supercapacitor electrodes. Mater. Chem. Phys. 291, 126718 (2022). https://doi.org/10.1016/J.MATCHEMPHYS.2022.126718

    Article  CAS  Google Scholar 

  22. P. Dhandapani, D.K. Maurya, S. Angaiah, Angaiah, progress in spinel-structured cobaltite-based positive electrode materials for supercapacitors. ChemistrySelect. 7, e202201008 (2022). https://doi.org/10.1002/SLCT.202201008

    Article  CAS  Google Scholar 

  23. M. Imranullah, T. Hussain, R. Ahmad, U. Shuaib, P.O. Agboola, I. Shakir, Reduced graphene oxide/hierarchal spinel nickel cobaltite nanoflowers composites for supercapacitor electrodes with ultrahigh capacitive and excellent rate performance. Ceram. Int. 48, 12460–12466 (2022). https://doi.org/10.1016/J.CERAMINT.2022.01.111

    Article  CAS  Google Scholar 

  24. P. Nayak, S.K. Nayak, B. Satpathy, Structural, electro-chemical and conduction mechanism in spinel NiFe2O4/NFO supercapacitor electrode material. Mater. Sci. Semicond. Process. 143, 106543 (2022). https://doi.org/10.1016/J.MSSP.2022.106543

    Article  CAS  Google Scholar 

  25. W. Peng, K. Chen, S. Li, J. Wang, Z. Su, N. Song, C. Zhang, S. Luo, A. **e, Spherical spinel NiMn2O4 in-situ grown on MWCNT via solvothermal synthesis for supercapacitors. Diam. Relat. Mater. 128, 109266 (2022). https://doi.org/10.1016/J.DIAMOND.2022.109266

    Article  CAS  Google Scholar 

  26. S. Aouini, A. Bardaoui, D.M.F. Santos, R. Chtourou, Hydrothermal synthesis of CuMn2O4 spinel-coated stainless steel mesh as a supercapacitor electrode. J. Mater. Sci. Mater. Electron. 33, 12726–12733 (2022). https://doi.org/10.1007/S10854-022-08219-4/FIGURES/5

    Article  CAS  Google Scholar 

  27. N. Sreenivasulu, U.N. Kumar, K.M.V.V. Madhav, T. Thomas, S.S. Bhattacharya, Structural and electrochemical investigations on nanocrystalline high entropy spinel oxides for battery-like supercapacitor applications. ChemistrySelect. 7, e202104015 (2022). https://doi.org/10.1002/SLCT.202104015

    Article  CAS  Google Scholar 

  28. W. Yang, M. Nawwar, I. Zhitomirsky, (2022) facile route for fabrication of ferrimagnetic Mn3O4 spinel material for supercapacitors with enhanced capacitance. Energies 15, 5 (1812). https://doi.org/10.3390/EN15051812

    Article  Google Scholar 

  29. D.A. Vinnik, D.P. Sherstyuk, V.E. Zhivulin, D.E. Zhivulin, A.Y. Starikov, S.A. Gudkova, D.A. Zherebtsov, D.A. Pankratov, Y.A. Alekhina, N.S. Perov, S.V. Trukhanov, E.L. Trukhanova, A.V. Trukhanov, Impact of the Zn–Co content on structural and magnetic characteristics of the Ni spinel ferrites. Ceram. Int. 48, 18124–18133 (2022). https://doi.org/10.1016/J.CERAMINT.2022.03.070

    Article  CAS  Google Scholar 

  30. M.A. Almessiere, Y. Slimani, S. Ali, A. Baykal, R.J. Balasamy, S. Guner, İA. Auwal, A.V. Trukhanov, S.V. Trukhanov, A. Manikandan, Impact of Ga3+ ions on the structure, magnetic, and optical features of Co–Ni nanostructured spinel ferrite microspheres. Nanomaterials 12, 2872 (2022). https://doi.org/10.3390/NANO12162872

    Article  CAS  Google Scholar 

  31. M. Mostafa, O. Saleh, A.M. Henaish, S.A.A. El-Kaream, R. Ghazy, O.M. Hemeda, A.M. Dorgham, H. Al-Ghamdi, A.H. Almuqrin, M.I. Sayyed, S.V. Trukhanov, E.L. Trukhanova, A.V. Trukhanov, D. Zhou, M.A. Darwish, Structure, morphology and electrical/magnetic properties of Ni–Mg nano-ferrites from a new perspective. Nanomaterials 12, 1045 (2022). https://doi.org/10.3390/NANO12071045

    Article  CAS  Google Scholar 

  32. D.P. Sherstyuk, A.Y. Starikov, V.E. Zhivulin, D.A. Zherebtsov, S.A. Gudkova, N.S. Perov, Y.A. Alekhina, K.A. Astapovich, D.A. Vinnik, A.V. Trukhanov, Effect of Co content on magnetic features and SPIN states IN Ni–Zn spinel ferrites. Ceram. Int. 47, 12163–12169 (2021). https://doi.org/10.1016/J.CERAMINT.2021.01.063

    Article  CAS  Google Scholar 

  33. J.M. Desantes, R. Novella, B. Pla, M. Lopez-Juarez, Effect of dynamic and operational restrictions in the energy management strategy on fuel cell range extender electric vehicle performance and durability in driving conditions. Energy Convers. Manag. 266, 115821 (2022). https://doi.org/10.1016/J.ENCONMAN.2022.115821

    Article  CAS  Google Scholar 

  34. Y. Zhu, S. Wang, J. Ma, P. Das, S. Zheng, Z.-S. Wu, Recent status and future perspectives of 2D MXene for micro-supercapacitors and micro-batteries. Energy Storage Mater. 51, 500–526 (2022). https://doi.org/10.1016/J.ENSM.2022.06.044

    Article  Google Scholar 

  35. Q. Huang, X. Li, G. Zhang, Y. Kan, C. Li, J. Deng, C. Wang, Flexible composite phase change material with anti-leakage and anti-vibration properties for battery thermal management. Appl. Energy. 309, 118434 (2022). https://doi.org/10.1016/J.APENERGY.2021.118434

    Article  CAS  Google Scholar 

  36. M. Athanasiou, S.N. Yannopoulos, T. Ioannides, Biomass-derived graphene-like materials as active electrodes for supercapacitor applications: a critical review. Chem. Eng. J. 446, 137191 (2022). https://doi.org/10.1016/J.CEJ.2022.137191

    Article  CAS  Google Scholar 

  37. A. Shokry, M. Karim, M. Khalil, S. Ebrahim, J. El Nady, Supercapacitor based on polymeric binary composite of polythiophene and single-walled carbon nanotubes. Sci. Rep. 12, 1–13 (2022). https://doi.org/10.1038/s41598-022-15477-z

    Article  CAS  Google Scholar 

  38. L. Wang, H. Yao, F. Chi, J. Yan, H. Cheng, Y. Li, L. Jiang, L. Qu, Spatial-interleaving graphene supercapacitor with high area energy density and mechanical flexibility. ACS Nano 16, 12813–12821 (2022). https://doi.org/10.1021/ACSNANO.2C04989

    Article  CAS  Google Scholar 

  39. X.H. **a, J.P. Tu, X.L. Wang, C.D. Gu, X.B. Zhao, Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material. Chem. Commun. 47, 5786–5788 (2011). https://doi.org/10.1039/C1CC11281C

    Article  CAS  Google Scholar 

  40. P. Kurzweil, J. Schottenbauer, C. Schell, Past, present and future of electrochemical capacitors: pseudocapacitance, aging mechanisms and service life estimation. J. Energ Storage 35, 102311 (2021). https://doi.org/10.1016/J.EST.2021.102311

    Article  Google Scholar 

  41. L. Wang, Z.H. Dong, Z.G. Wang, F.X. Zhang, J. **, Layered α-Co(OH)2 nanocones as electrode materials for pseudocapacitors: understanding the effect of interlayer space on electrochemical activity. Adv. Funct. Mater. 23, 2758–2764 (2013). https://doi.org/10.1002/ADFM.201202786

    Article  CAS  Google Scholar 

  42. X.H. **a, J.P. Tu, X.L. Wang, C.D. Gu, X.B. Zhao, Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material. J. Mater. Chem. 21, 671–679 (2010). https://doi.org/10.1039/C0JM02784G

    Article  Google Scholar 

  43. E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937–950 (2001). https://doi.org/10.1016/S0008-6223(00)00183-4

    Article  CAS  Google Scholar 

  44. L. Feng, S. Yuan, L.L. Zhang, K. Tan, J.L. Li, A. Kirchon, L.M. Liu, P. Zhang, Y. Han, Y.J. Chabal, H.C. Zhou, Creating hierarchical pores by controlled linker thermolysis in multivariate metal-organic frameworks. J. Am. Chem. Soc. 140, 2363–2372 (2018). https://doi.org/10.1021/JACS.7B12916/ASSET/IMAGES/LARGE/JA-2017-129168_0005.JPEG

    Article  CAS  Google Scholar 

  45. S. Yuan, L. Zou, J.S. Qin, J. Li, L. Huang, L. Feng, X. Wang, M. Bosch, A. Alsalme, T. Cagin, H.C. Zhou, Construction of hierarchically porous metal–organic frameworks through linker labilization. Nat. Commun. 8(1), 10 (2017). https://doi.org/10.1038/ncomms15356

    Article  CAS  Google Scholar 

  46. T.N. Vinuth Raj, P.A. Hoskeri, H.B. Muralidhara, C.R. Manjunatha, K. Yogesh Kumar, M.S. Raghu, Facile synthesis of perovskite lanthanum aluminate and its green reduced graphene oxide composite for high performance supercapacitors. J. Electroanal. Chem. 858, 113830 (2020). https://doi.org/10.1016/J.JELECHEM.2020.113830

    Article  CAS  Google Scholar 

  47. S. Manzoor, A.G. Abid, S. Aman, M. Abdullah, A.R. Rashid, H.M. Ali, H.K. Thabet, O.A. Abu Ali, M.N. Ashiq, T.A. Taha, Facile synthesis of CoFePO4 on eggshell membrane for oxygen evolution reaction and supercapacitor applications. Ceram. Int. (2022). https://doi.org/10.1016/J.CERAMINT.2022.08.266

    Article  Google Scholar 

  48. E.D. Miensah, L.T. Kokuloku, A. Gu, K. Chen, P. Wang, C. Gong, P. Mao, K. Chen, Y. Jiao, Y. Yang, Effects of activation parameters on zeolitic imidazolate framework JUC-160-derived, nitrogen-doped hierarchical nanoporous carbon and its volatile iodine capture properties. Colloids Surf A Physicochem. Eng. Asp. 650, 129478 (2022). https://doi.org/10.1016/J.COLSURFA.2022.129478

    Article  CAS  Google Scholar 

  49. G. Han, M. Li, H. Liu, W. Zhang, L. He, F. Tian, Y. Liu, Y. Yu, W. Yang, S. Guo, Short-range diffusion enables general synthesis of medium-entropy alloy aerogels. Adv. Mater. 34, 2202943 (2022). https://doi.org/10.1002/ADMA.202202943

    Article  CAS  Google Scholar 

  50. Y. Li, K. Yin, Y. Diao, M. Fang, J. Yang, J. Zhang, H. Cao, X. Liu, J. Jiang, A biopolymer-gated ionotronic junctionless oxide transistor array for spatiotemporal pain-perception emulation in nociceptor network. Nanoscale 14, 2316–2326 (2022). https://doi.org/10.1039/D1NR07896H

    Article  CAS  Google Scholar 

  51. M. Gao, F. Tian, Z. Guo, X. Zhang, Z. Li, J. Zhou, X. Zhou, Y. Yu, W. Yang, Mutual-modification effect in adjacent Pt nanoparticles and single atoms with sub-nanometer inter-site distances to boost photocatalytic hydrogen evolution. Chem. Eng. J. 446, 137127 (2022). https://doi.org/10.1016/J.CEJ.2022.137127

    Article  Google Scholar 

  52. F. Wu, X. Ren, F. Tian, G. Han, J. Sheng, Y. Yu, Y. Liu, W. Yang, O and N co-doped porous carbon derived from crop waste for a high-stability all-solid-state symmetric supercapacitor. New J. Chem. (2022). https://doi.org/10.1039/D2NJ04125A

    Article  Google Scholar 

  53. M. Gao, F. Tian, X. Zhang, Y. Liu, Z. Chen, Y. Yu, W. Yang, Y. Hou, Fast charge separation and transfer strategy in polymeric carbon nitride for efficient photocatalytic H2 evolution: coupling surface Schottky junctions and interlayer charge transfer channels. Nano Energy. 103, 107767 (2022). https://doi.org/10.1016/J.NANOEN.2022.107767

    Article  CAS  Google Scholar 

  54. X. Zhang, C. Zhu, L. Qiu, M. Gao, F. Tian, Y. Liu, W. Yang, Y. Yu, Concentrating photoelectrons on sulfur sites of ZnxCd1–xS to active H-OH bond of absorbed water boosts photocatalytic hydrogen generation. Surf. Interf. 34, 102312 (2022). https://doi.org/10.1016/J.SURFIN.2022.102312

    Article  CAS  Google Scholar 

  55. J.P. Zhou, L. Lv, Q. Liu, M.T. Rahman, M. Asadul Hoque, G.T. Rahman, Z. Jiang, L. Chen, N. Shi, R. Situmeang, A.A. Saputra, Y. Andayani, M.I. Imanudin, S. Sembiring, The effect of vanadium dopant on bandgap energy of Ni1-xVxFe2O4 nanospinel. J. Phys. Conf. Ser. 1751, 012104 (2021). https://doi.org/10.1088/1742-6596/1751/1/012104

    Article  CAS  Google Scholar 

  56. Z. Huang, W. Pang, P. Liang, Z. **, N. Grundish, Y. Li, C.A. Wang, A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties. J. Mater. Chem. A. 7, 16425–16436 (2019). https://doi.org/10.1039/C9TA03395E

    Article  CAS  Google Scholar 

  57. B. Yu, Y. Ji, X. Hu, Y. Liu, J. Yuan, S. Lei, G. Zhong, Z. Weng, H. Zhan, Z. Wen, Heterostructured Cu2S@ZnS/C composite with fast interfacial reaction kinetics for high-performance 3D-printed Sodium–Ion batteries. Chem. Eng. J. 430, 132993 (2022). https://doi.org/10.1016/J.CEJ.2021.132993

    Article  CAS  Google Scholar 

  58. L. Peng, S.S.A. Shah, Z. Wei, Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction, Chinese. J. Catal. 39, 1575–1593 (2018). https://doi.org/10.1016/S1872-2067(18)63130-4

    Article  CAS  Google Scholar 

  59. Z.K. Heiba, M.A. Deyab, M.B. Mohamed, N.M. Farag, A.M. El-naggar, J.R. Plaisier, Electrochemical performance of CuCo2O4/CuS nanocomposite as a novel electrode material for supercapacitor. Appl. Phys. A Mater. Sci. Process. 127, 1–10 (2021). https://doi.org/10.1007/S00339-021-05012-8/FIGURES/11

    Article  Google Scholar 

  60. Y. Tian, Z. Su, Z. Zhao, B. Cong, M. Wang, Spherical NiCo2O4/CuS composites for supercapacitor electrodes. Mater. Lett. 264, 127400 (2020). https://doi.org/10.1016/J.MATLET.2020.127400

    Article  CAS  Google Scholar 

  61. S. Brutti, M. Waqas Alam, H.S. Al Qahtani, H. Albalawi, M. Aamir, M. Bilal, T. Ahmad Mir, B. Souayeh, N. Zaidi, Enhanced electrodes for supercapacitor applications prepared by hydrothermal-assisted nano sheet-shaped MgCo2O4@ZnS. Crystals 12(6), 822 (2022). https://doi.org/10.3390/CRYST12060822

    Article  Google Scholar 

  62. Y. Zhao, L. Xu, J. Yan, W. Yan, C. Wu, J. Lian, Y. Huang, J. Bao, J. Qiu, L. Xu, Y. Xu, H. Xu, H. Li, Facile preparation of NiFe2O4/MoS2 composite material with synergistic effect for high performance supercapacitor. J. Alloys Compd. 726, 608–617 (2017). https://doi.org/10.1016/J.JALLCOM.2017.07.327

    Article  CAS  Google Scholar 

  63. K.C. Tsay, L. Zhang, J. Zhang, Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor. Electrochim. Acta. 60, 428–436 (2012). https://doi.org/10.1016/J.ELECTACTA.2011.11.087

    Article  CAS  Google Scholar 

  64. Z.M. Riyas, C. Priya, R. Premila, G. Maheshwaran, S. Sudhahar, M.R. Prabhu, Synergistic effect of La2O3–NiO nanocomposite based electrode for electrochemical high-performance asymmetric supercapacitor applications. J. Energ Storage 53, 104988 (2022). https://doi.org/10.1016/J.EST.2022.104988

    Article  Google Scholar 

  65. H. Duan, Z. Song, L. Miao, L. Li, D. Zhu, L. Gan, M. Liu, Unraveling the role of solvent–precursor interaction in fabricating heteroatomic carbon cathode for high-energy-density Zn–ion storage. J. Mater. Chem. A. 10, 9837–9847 (2022). https://doi.org/10.1039/D2TA00754A

    Article  CAS  Google Scholar 

  66. M. Sethi, D.K. Bhat, Facile solvothermal synthesis and high supercapacitor performance of NiCo2O4 nanorods. J. Alloys Compd. 781, 1013–1020 (2019). https://doi.org/10.1016/J.JALLCOM.2018.12.143

    Article  CAS  Google Scholar 

  67. X. Han, J. Ge, J. Luo, Y. Wang, X. Zhao, F. Zhang, X. Lei, Construction of vacancies-enriched CuS/Fe2O3 with nano-heterojunctions as negative electrode for flexible solid-state supercapacitor. J. Alloys Compd. 916, 165443 (2022). https://doi.org/10.1016/J.JALLCOM.2022.165443

    Article  CAS  Google Scholar 

  68. S.B.A. Abbas, K.H. Harbbi, Elimination of the broadening in X-ray diffraction lines profile for nanoparticles by using the analysis of diffraction lines method. AIP Conf. Proc. 2386, 080033 (2022). https://doi.org/10.1063/5.0067983

    Article  CAS  Google Scholar 

  69. V.N. Rao, P. Ravi, M. Sathish, M. Sakar, B.L. Yang, J.M. Yang, M.M. Kumari, M.V. Shankar, Titanate quantum dots-sensitized Cu2S nanocomposites for superficial H2 production via photocatalytic water splitting. Int. J. Hydrogen Energ. (2022). https://doi.org/10.1016/J.IJHYDENE.2022.05.091

    Article  Google Scholar 

  70. L. Huang, F. Tang, P. Liu, W. **ong, S. Jia, F. Hao, Y. Lv, H. Luo, Highly efficient and selective conversion of guaiacol to cyclohexanol over Ni–Fe/MgAlOx: understanding the synergistic effect between Ni–Fe alloy and basic sites. Fuel 327, 125115 (2022). https://doi.org/10.1016/J.FUEL.2022.125115

    Article  CAS  Google Scholar 

  71. D. Gogoi, R.S. Karmur, M.R. Das, N.N. Ghosh, A high-performance flexible energy storage device from biomass-derived porous carbon supported MnCo2O4 nanorods and MnO2 nanoscales. Sustain. Energ. Fuels 6, 3599–3610 (2022). https://doi.org/10.1039/D2SE00624C

    Article  CAS  Google Scholar 

  72. M. Shirvani, S.S.H. Davarani, Bimetallic CoSe2/FeSe2 hollow nanocuboids assembled by nanoparticles as a positive electrode material for a high-performance hybrid supercapacitor. Dalt. Trans. (2022). https://doi.org/10.1039/D2DT02058K

    Article  Google Scholar 

  73. M. Gautam, D.T. Hofsommer, S.S. Uttarwar, N. Theaker, W.F. Paxton, C.A. Grapperhaus, J.M. Spurgeon, The effect of flue gas contaminants on electrochemical reduction of CO2 to methyl formate in a dual methanol/water electrolysis system. Chem Catal. (2022). https://doi.org/10.1016/J.CHECAT.2022.08.001

    Article  Google Scholar 

  74. R. Mohanty, G. Swain, K. Parida, K. Parida, Enhanced electrochemical performance of flexible asymmetric supercapacitor based on novel nanostructured activated fullerene anchored zinc cobaltite. J. Alloys Compd. 919, 165753 (2022). https://doi.org/10.1016/J.JALLCOM.2022.165753

    Article  CAS  Google Scholar 

  75. T. Ma, H. Liu, Y. Wang, M. Zhang, Rapid construction of three-dimensional sulfur doped graphene supported by NiFeS2 interconnected networks as convenient electron/ion transport channels for flexible supercapacitors. Electrochim Acta 309, 1–10 (2019). https://doi.org/10.1016/J.ELECTACTA.2019.04.079

    Article  CAS  Google Scholar 

  76. X. Gao, W. Wang, J. Bi, Y. Chen, X. Hao, X. Sun, J. Zhang, Morphology-controllable preparation of NiFe2O4 as high performance electrode material for supercapacitor. Electrochim Acta 296, 181–189 (2019). https://doi.org/10.1016/J.ELECTACTA.2018.11.054

    Article  CAS  Google Scholar 

  77. X. Zhang, Z. Zhang, S. Sun, Q. Sun, X. Liu, Hierarchical 3D NiFe2O4@MnO2 core–shell nanosheet arrays on Ni foam for high-performance asymmetric supercapacitors. Dalt. Trans. 47, 2266–2273 (2018). https://doi.org/10.1039/C7DT04127F

    Article  CAS  Google Scholar 

  78. M.M. Baig, E. Pervaiz, M. Azad, Z. Jahan, M.B. Khan Niazi, S.M. Baig, NiFe2O4/SiO2 nanostructures as a potential electrode material for high rated supercapacitors. Ceram. Int. 47, 12557–12566 (2021). https://doi.org/10.1016/J.CERAMINT.2021.01.113

    Article  CAS  Google Scholar 

  79. N. Ghassemi, S.S.H. Davarani, H.R. Moazami, Cathodic electrosynthesis of CuFe2O4/CuO composite nanostructures for high performance supercapacitor applications. J. Mater. Sci. Mater. Electron. 29, 12573–12583 (2018). https://doi.org/10.1007/S10854-018-9374-8/TABLES/2

    Article  CAS  Google Scholar 

  80. X. Feng, Y. Huang, X. Chen, C. Wei, X. Zhang, M. Chen, Hierarchical CoFe2O4/NiFe2O4 nanocomposites with enhanced electrochemical capacitive properties. J. Mater. Sci. 53, 2648–2657 (2018). https://doi.org/10.1007/S10853-017-1735-9/TABLES/1

    Article  CAS  Google Scholar 

  81. N. Sapna, V. Budhiraja, S.K. Kumar, Singh, Synergistic effect in structural and supercapacitor performance of well dispersed CoFe2O4/Co3O4 nano-hetrostructures. Ceram. Int. 44, 13806–13814 (2018). https://doi.org/10.1016/J.CERAMINT.2018.04.224

    Article  CAS  Google Scholar 

  82. D. Yu, Z. Zhang, Y. Meng, Y. Teng, Y. Wu, X. Zhang, Q. Sun, W. Tong, X. Zhao, X. Liu, The synthesis of hierarchical ZnCo2O4@MnO2 core–shell nanosheet arrays on Ni foam for high-performance all-solid-state asymmetric supercapacitors. Inorg. Chem. Front. 5, 597–604 (2018). https://doi.org/10.1039/C7QI00706J

    Article  CAS  Google Scholar 

  83. R. Khan, M. Habib, M.A. Gondal, A. Khalil, Z.U. Rehman, Z. Muhammad, Y.A. Haleem, C. Wang, C.Q. Wu, L. Song, Facile synthesis of CuFe2O4–Fe2O3 composite for high-performance supercapacitor electrode applications. Mater. Res. Express. 4, 105501 (2017). https://doi.org/10.1088/2053-1591/AA8DC4

    Article  Google Scholar 

  84. M. Rahmati, S.M. Masoudpanah, S. Alamolhoda, J. Barqi, High-performance hybrid capacitors based on the FeNi3/NiFe2O4 composite powders synthesized by combustion method. J. Mater. Res. Technol. 16, 1578–1587 (2022). https://doi.org/10.1016/J.JMRT.2021.12.043

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant no. PNURSP2023R70), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Funding

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant no. PNURSP2022R70), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

MUN, SM: write the original article. MA, AGA: work in labs. HAA: review and editing. SA: supervision.

Corresponding author

Correspondence to Salma Aman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Yes this article compliance with ethical standards of journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzoor, S., Alburaih, H.A., Nisa, M.U. et al. A novel porous rod with nanosphere CuS2/NiFe2Onanocomposite for low-cost high-performance energy storage system. J Mater Sci: Mater Electron 34, 294 (2023). https://doi.org/10.1007/s10854-022-09584-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09584-w

Navigation