Log in

Sintering behavior, phase composition, microstructure, and dielectric properties of low-permittivity alkaline earth silicate Sr3MgSi2O8 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Microwave dielectric materials with low permittivity and high quality factor are the cornerstone of high-speed data transmission. This paper prepared a new low-permittivity microwave dielectric ceramic Sr3MgSi2O8 ( SMS) by a solid-state reaction method. SMS ceramics belonged to the monoclinic system ( space group: P21/a) at 1375 °C ~ 1475 °C, accompanied by the formation of small amount of Sr2SiO4 second phase ( space group: P21/n). SMS ceramics has the lowest dam** at 1450 °C. With the increase in sintering temperature, the relative density of ceramics increases firstly and then decreases, reaching the maximum value (95.82%) at 1450 °C. The SMS ceramics sintered at 1450 °C for 4 h have the best microwave dielectric properties of εr = 11.06, Q × f = 25,375 GHz, and τf = − 57.41 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. F. Huang, H. Su, Y. Li, H. Zhang, X. Tang, Low-temperature sintering and microwave dielectric properties of CaMg1−xLi2xSi2O6 (x = 0–0.3) ceramics. J. Adv. Ceram. 9(4), 471–480 (2020)

    Article  CAS  Google Scholar 

  2. C. Li, H. **ang, M. Xu, J. Khaliq, J. Chen, L. Fang, Low-firing and temperature stable microwave dielectric ceramics: Ba2LnV3O11(Ln = Nd, Sm). J. Am. Ceram. Soc. 101(2), 773–781 (2018)

    Article  CAS  Google Scholar 

  3. X. Zhou, K. Wang, S. Hu, X. Luan, S. He, X. Wang, S. Zhou, X. Chen, H. Zhou, Preparation, structure and microwave dielectric properties of novel La2MgGeO6 ceramics with hexagonal structure and adjustment of its τ value. Ceram. Int. 47(6), 7783–7789 (2021)

    Article  CAS  Google Scholar 

  4. Y. Wang, Y. Tang, J. Li, W. Fang, S. Shen, F. Li, L. Duan, M. Qin, L. Fang, Microwave dielectric properties of silico-carnotite Ca3M2Si3O12 (M= Yb, Y) ceramics synthesized via high energy ball milling. Ceram. Int. 47(4), 4831–4837 (2021)

    Article  CAS  Google Scholar 

  5. X. Zhou, L. Liu, J. Sun, N. Zhang, H. Sun, H. Wu, W. Tao, Effects of (Mg1/3Sb2/3)4+ substitution on the structure and microwave dielectric properties of Ce2Zr3(MoO4)9 ceramics. J. Adv. Ceram. 10(4), 778–789 (2021)

    Article  CAS  Google Scholar 

  6. K. Wang, H. Zhou, X. Luan, S. Hu, X. Zhou, S. He, X. Wang, S. Zhou, X. Chen, NaTaO3 microwave dielectric ceramic a with high relative permittivity and as an excellent compensator for the temperature coefficient of resonant frequency. Ceram. Int. 47(1), 121–129 (2021)

    Article  CAS  Google Scholar 

  7. K. Wang, H. Zhou, X. Luan, S. Hu, X. Zhou, J. Deng, S. Li, Microwave dielectric properties of LiSmTa4O12 ceramics with A-site deficient perovskite structure. Mater. Lett. 274, 128020 (2020)

    Article  CAS  Google Scholar 

  8. X. Zhou, H. Zhou, S. Hu, X. Luan, J. Deng, C. Lu, S. Li, K. Wang, X. Chen, Sintering behavior and microwave dielectric properties of low-permittivity SrMgSi2O6 ceramic. J. Electron. Mater. 49(10), 5989–5993 (2020)

    Article  CAS  Google Scholar 

  9. M. **ao, Y. Wei, P. Zhang, The effect of sintering temperature on the crystal structure and microwave dielectric properties of CaCoSi2O6 ceramic. Mater. Chem. Phys. 225, 99–104 (2019)

    Article  CAS  Google Scholar 

  10. N.G.-L. Pan Wen, W.A.N.G. **g-Hui, L.I.N. Yuan, A novel synthesis of alkaline earth silicate phosphor Sr3MgSi2O8:Eu2+, Dy3+. Chinese J. Chem. 25(5), 605–608 (2007)

    Article  Google Scholar 

  11. H.W. Tseng, H.Y. Tu, Q.H. Yang, C.F. Yang, Effects of composition variations on the crystalline phases and photoluminescence properties of Ca2+x MgSi2Eu0025O7+x phosphors. ACS Omega 7(5), 3917–3924 (2022)

    Article  CAS  Google Scholar 

  12. M. **ao, Y. Wei, P. Zhang, The correlations between complex chemical bond theory and microwave dielectric properties of Ca2MgSi2O7 ceramics. J. Electron. Mater. 48(3), 1652–1659 (2019)

    Article  CAS  Google Scholar 

  13. M. **ao, Y. Wei, H. Sun, J. Lou, P. Zhang, Crystal structure and microwave dielectric properties of low-permittivity Sr2MgSi2O7 ceramic. J. Mater. Sci.: Mater. Electron. 29(23), 20339–20346 (2018)

    CAS  Google Scholar 

  14. K.C. Feng, C.-Y. Lin, C.C. Chou, L.-W. Chu, Effect of particle size on crystallization and microwave dielectric characteristics of CaMgSi2O6 glass-ceramics. Ferroelectrics 435(1), 91–97 (2012)

    Article  CAS  Google Scholar 

  15. H. Sun, Q. Zhang, H. Yang, J. Zou, (Ca1−xMgx) SiO3: A low-permittivity microwave dielectric ceramic system. Mater. Sci. Eng. B 138(1), 46–50 (2007)

    Article  CAS  Google Scholar 

  16. A.S.B.M.E. Huntelaar, E.H.P. Cordfunke, R.R. van der Laan, The thermodynamic properties of Sr3MgSi2O8 from T=(0 to 1500) K. J. Chem. Thermodyn. 30(5), 671–683 (2000)

    Article  Google Scholar 

  17. W. Pan, G. Ning, Synthesis and luminescence properties of Sr3MgSi2O8:Eu2+, Dy3+ by a novel silica-nanocoating method. Sens. Actuator A Phys. 139(1–2), 318–322 (2007)

    Article  CAS  Google Scholar 

  18. B. Wang, Y. Liu, Z. Huang, M. Fang, Photoluminescence properties of a Ce3+ doped Sr3MgSi2O8 phosphor with good thermal stability. RSC Adv. 8(28), 15587–15594 (2018)

    Article  CAS  Google Scholar 

  19. Y. Gong, Y. Wang, X. Xu, Y. Li, S. **n, L. Shi, The persistent energy transfer of Eu2+ and Mn2+ and the thermoluminescence properties of long-lasting phosphor Sr3MgSi2O8:Eu2+, Mn2+, Dy3+. Opt. Mater. 33(11), 1781–1785 (2011)

    Article  CAS  Google Scholar 

  20. X. Chen, Q. Shu, J. He, Luminescent properties and energy transfer mechanism from Tb3+ to Eu3+ in single-phase color-adjustable Sr3MgSi2O8:Eu3+, Tb3+ phosphor prepared by the sol-gel method. J. Alloys Compd. 891, 161878 (2022)

    Article  CAS  Google Scholar 

  21. K.J. Choi, J.K. Park, C.H. Kim, H.D. Park, H.K. Kim, Luminescence characteristics of Sr3MgSi2O8: Eu blue phosphor for light-emitting diodes. Electrochem. Solid-State. Lett. 7(10), H42–H43 (2004)

    Article  Google Scholar 

  22. M. Zhang, T. Song, X. Zhang, Investigations of crystal structures and the electronic structure changes of Sr3MgSi2O8-Sr3MgSi2O8−δ systems by first-principles calculation. Chem. Phys. Lett. 712, 54–59 (2018)

    Article  CAS  Google Scholar 

  23. P. Dewangan, D.P. Bisen, N. Brahme, S. Sharma, R.K. Tamrakar, I.P. Sahu, Investigation of structural and thermal response of Sm3+ doped Sr3MgSi2O8 phosphors. Opt. Quantum Electron. 52(10), 441 (2020)

    Article  CAS  Google Scholar 

  24. P. Dewangan, D.P. Bisen, N. Brahme, S. Sharma, R.K. Tamrakar, I.P. Sahu, K. Upadhyay, Influence of Dy3+ concentration on spectroscopic behaviour of Sr3MgSi2O8:Dy3+ phosphors. J. Alloys Compd. 816, 152590 (2020)

    Article  CAS  Google Scholar 

  25. P. Dewangan, D.P. Bisen, N. Brahme, R.K. Tamrakar, S. Sharma, K. Upadhyay, Growth and synthesis of Sr3MgSi2O8:Dy3+ nanorod arrays by a solid state reaction method. Opt. Quantum Electron. 50(10), 1–7 (2018)

    Article  CAS  Google Scholar 

  26. H. Yu, W. Zi, S. Lan, S. Gan, H. Zou, X. Xu, G. Hong, Green light emission by Ce3+ and Tb3+ co-doped Sr3MgSi2O8 phosphors for potential application in ultraviolet whitelight-emitting diodes. Opt. Laser Technol. 44(7), 2306–2311 (2012)

    Article  CAS  Google Scholar 

  27. M. Zhang, T. Song, X. Zhang, First-principles calculation of influence of nitrogen substituting for oxygen on the crystal structures and electronic band structures of Sr3MgSi2O8-σNσ. Comput. Mater. Sci. 163, 256–261 (2019)

    Article  CAS  Google Scholar 

  28. M. Zhang, T. Song, H. Zhu, X. Zhang, First principles calculation of enhanced absorptions of Sr3MgSi2O8-δSδ in UV region induced by sulfide ions substituting for oxygen ions. Theor. Chem. Acc. 140(5), 56 (2021)

    Article  CAS  Google Scholar 

  29. A.A. Sabbagh Alvani, F. Moztarzadeh, A.A. Sarabi, Effects of dopant concentrations on phosphorescence properties of Eu/Dy-doped Sr3MgSi2O8. J. Lumin. 114(2), 131–136 (2005)

    Article  CAS  Google Scholar 

  30. P. Thiyagarajan, M.S. Ramachandra Rao, Cool white light emission on Ca3MgSi2O8: Ce3+, Eu2+ phosphors and analysis of energy transfer mechanism. Appl. Phys. A. 99(4), 947–953 (2010)

    Article  CAS  Google Scholar 

  31. H.B. Bafrooei, B. Liu, W. Su, K.X. Song, Ca3MgSi2O8: Novel low-permittivity microwave dielectric ceramics for 5G application. Mater. Lett. 263, 127248 (2020)

    Article  CAS  Google Scholar 

  32. G.J. Talwar, C.P. Joshi, S.V. Moharil, S.M. Dhopte, P.L. Muthal, V.K. Kondawar, Combustion synthesis of Sr3MgSi2O8:Eu2+ and Sr2MgSi2O7:Eu2+ phosphors. J. Lumin. 129(11), 1239–1241 (2009)

    Article  CAS  Google Scholar 

  33. B. Liu, Y.H. Huang, K.X. Song, L. Li, X.M. Chen, Structural evolution and microwave dielectric properties in Sr2(Ti1-xSnx)O4 ceramics. J. Eur. Ceram. Soc. 38(11), 3833–3839 (2018)

    Article  CAS  Google Scholar 

  34. G. Wang, Q. Fu, L. Zha, M. Hu, J. Huang, Z. Zheng, W. Luo, Microwave dielectric characteristics of tungsten bronze-type Ba4Nd28/3Ti18-yGa4y/3O54 ceramics with temperature stable and ultra-low loss. J. Eur. Ceram. Soc. 42(1), 154–161 (2022)

    Article  CAS  Google Scholar 

  35. Z.Q. Yuan, B. Liu, X.Q. Liu, X.M. Chen, Structure and microwave dielectric characteristics of Sr(La1−xSmx)2Al2O7 ceramics. RSC Adv. 6(98), 96229–96236 (2016)

    Article  CAS  Google Scholar 

  36. P. Zhang, Y. Zhao, W. Haitao, Bond ionicity, lattice energy, bond energy and microwave dielectric properties of ZnZr(Nb1-xAx)2O8 (A = Ta, Sb) ceramics. Dalton. Trans. 44(38), 16684–16693 (2015)

    Article  CAS  Google Scholar 

  37. A.M. Heyns, P.M. Harden, The temperature dependence of the Raman spectra of chromium-doped titanite CaTiOSiO4. J. Raman. Spectrosc. 44(11), 1615–1624 (2013)

    Article  CAS  Google Scholar 

  38. P.M.H. Anton, M. Heyns, L.C. Prinsloo, Resonance Raman study of the high-pressure phase transition in chromium-doped titanite, CaTiOSiO4. J. Raman. Spectrosc. 31, 837–841 (2000)

    Article  Google Scholar 

  39. S. Bastians, G. Crump, W.P. Griffith, R. Withnall, Raspite and studtite: Raman spectra of two unique minerals. J. Raman. Spectrosc. 35(89), 726–731 (2004)

    Article  CAS  Google Scholar 

  40. V.S.T.C.A. Diasa, F.M. Matinaga, R.L. Moreira, Raman scattering and X-ray diffraction investigations on hydrothermal barium magnesium niobate ceramics. J. Eur. Ceram. Soc. 21(2001), 2739–2744 (2001)

    Article  Google Scholar 

  41. M. Tribaudino, I. Aliatis, D. Bersani, G.D. Gatta, E. Lambruschi, L. Mantovani, G. Redhammer, P.P. Lottici, High-pressure Raman spectroscopy of Ca(Mg, Co)Si2O6 and Ca(Mg, Co)Ge2O6 clinopyroxenes. J. Raman Spectrosc. 48(11), 1443–1448 (2017)

    Article  CAS  Google Scholar 

  42. Y. Yonezaki, Structural influence on photochromic behaviors of Eu2+ -doped glaserite-type silicates. J. Lumin. 195, 408–412 (2018)

    Article  CAS  Google Scholar 

  43. M.G. Zuev, A.M. Кarpov, A.S. Shkvarin, Synthesis and spectral characteristics of Sr2Y8(SiO4)6O2: Eu polycrystals. J. Solid State Chem. 184(1), 52–58 (2011)

    Article  CAS  Google Scholar 

  44. N.M. Khaidukov, M. Kirm, E. Feldbach, H. Mägi, V. Nagirnyi, E. Tõldsepp, S. Vielhauer, T. Jüstel, T. Jansen, V.N. Makhov, Luminescence properties of silicate apatite phosphors M2La8Si6O26: Eu (M = Mg, Ca, Sr). J. Lumin. 191, 51–55 (2017)

    Article  CAS  Google Scholar 

  45. Y. Cao, L. Zhang, H. Mei, Z. Rao, T. Tian, C. Li, Crystal structure, phonon characteristics, and dielectric properties of CaMgGe2O6: a novel diopside microwave dielectric ceramic. Ceram. Int. 48(6), 8783–8788 (2022)

    Article  CAS  Google Scholar 

  46. C. Yin, Y. Tang, J. Chen, F. Li, Y. Huang, C. Li, X. **ng, L. Fang, Two low-permittivity melilite ceramics in the SrO-MO-GeO2 (M = Mg, Zn) system and their temperature stability through compositional modifications. J. Eur. Ceram. Soc. 40(4), 1186–1190 (2020)

    Article  CAS  Google Scholar 

  47. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73(1), 348–366 (1993)

    Article  CAS  Google Scholar 

  48. S.Z. Hao, D. Zhou, C. Du, L.X. Pang, C. Singh, S. Trukhanov, A. Trukhanov, A.S.B. Sombra, J. Varghese, Q. Li, X.Q. Zhang, Temperature-stable x(Na0.5Bi0.5)MoO4-(1–x)MoO3 composite ceramics with ultralow sintering temperatures and low dielectric loss for dielectric resonator antenna applications. ACS Appl. Electron. 3(5), 2286–2296 (2021)

    Article  CAS  Google Scholar 

  49. S.D. Ramarao, V.R.K. Murthy, Crystal structure refinement and microwave dielectric properties of new low dielectric loss AZrNb2O8 (A: Mn, Zn, Mg and Co) ceramics. Scr. Mater. 69(3), 274–277 (2013)

    Article  CAS  Google Scholar 

  50. Y. Lai, X. Tang, X. Huang, H. Zhang, X. Liang, J. Li, H. Su, Phase composition, crystal structure and microwave dielectric properties of Mg2-xCuxSiO4 ceramics. J. Eur. Ceram. Soc. 38(4), 1508–1516 (2018)

    Article  CAS  Google Scholar 

  51. M. O’Keeffe, N.E. Brese, Bond-valence parameters for solids. Acta Cryst. B47, 192–197 (1991)

    Google Scholar 

  52. W. Yu, J. Lv, F. Shi, K. Song, W. Lei, H. Zhou, Z.-M. Qi, J. Wang, Lattice vibrational characteristics, crystal structure, and dielectric properties of single-phase Sr(Mg1/2Mo1/2)O3 microwave dielectric ceramic. J. Mater. Sci.: Mater. Electron. 32(13), 17191–17199 (2021)

    CAS  Google Scholar 

  53. Y. Zhang, Y. Zhang, M. **ang, Crystal structure and microwave dielectric characteristics of Zr-substituted CoTiNb2O8 ceramics. J. Eur. Ceram. Soc. 36(8), 1945–1951 (2016)

    Article  CAS  Google Scholar 

  54. Y. Zhao, P. Zhang, Preparation for ultra-low loss dielectric ceramics of ZnZrNb2O8 by reaction-sintering process. J. Alloys Compd. 672, 630–635 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of China (Nos. 61761015), the Natural Science Foundation of Guangxi (Nos. 2017GXNSFFA198011, 2018GXNSFFA050001), and the High-Level Innovation Team and Outstanding Scholar Program of Guangxi Institute.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by YH, XW, GH HZ, and YW. The first draft of the manuscript was written by YH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to You Wu, **uli Chen or Huanfu Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Wei, X., He, G. et al. Sintering behavior, phase composition, microstructure, and dielectric properties of low-permittivity alkaline earth silicate Sr3MgSi2O8 ceramics. J Mater Sci: Mater Electron 33, 26263–26275 (2022). https://doi.org/10.1007/s10854-022-09310-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09310-6

Navigation