Log in

Capacity determination of ZnCo0.26O1.63–N0.18C0.82 derived from bimetallic zeolitic imidazolate framework as anode in sodium-ion battery

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A bimetallic Zn–Co-ZIF derived from metal organic framework was successfully synthesized via simple co-precipitation method. The as-synthesized bimetallic MOF powder was then pyrolyzed at 600 °C, 700 °C, 800 °C, and 900 °C in N2 atmosphere, which changed the morphology and structure of the final product evidenced from field emission scanning electron microscopy and X-ray diffraction. The electrochemical results revealed that the change in elemental composition affected the specific capacity, cycling stability, and rate capability for each sample. The galvanostatic charge–discharge results showed that C600 achieved the highest specific capacity and rate capability compared to other samples heated at higher temperatures. On the other hand, C900, the sample heated at the highest temperature exhibited the best capacity retention after 50 cycles at 78% after the initial discharge whilst providing the lowest reversible discharge capacity at 45 mAh g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article (and its supplementary information files) and available from the corresponding author on reasonable request.

References

  1. X. Pu, H. Wang, D. Zhao, H. Yang, X. Ai, S. Cao, Z. Chen, Y. Cao, Recent progress in rechargeable sodium-ion batteries: toward high-power applications. Small 15(32), 1805427 (2019). https://doi.org/10.1002/smll.201805427

    Article  CAS  Google Scholar 

  2. L. Li, Y. Zheng, S. Zhang, J. Yang, Z. Shao, Z. Guo, Recent progress on sodium ion batteries: potential high-performance anodes. Energy Environ. Sci. 11(9), 2310–2340 (2018). https://doi.org/10.1039/C8EE01023D

    Article  CAS  Google Scholar 

  3. M. Sawicki, L.L. Shaw, Advances and challenges of sodium ion batteries as post lithium ion batteries. RSC Adv. 5(65), 53129–53154 (2015)

    Article  CAS  Google Scholar 

  4. A. Zhou, W. Cheng, W. Wang, Q. Zhao, J. **e, W. Zhang, H. Gao, L. Xue, J. Li, Hexacyanoferrate-type prussian blue analogs: principles and advances toward high-performance sodium and potassium ion batteries. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202000943

    Article  Google Scholar 

  5. G. Lee, Y.D. Seo, J. Jang, ZnO quantum dot-decorated carbon nanofibers derived from electrospun ZIF-8/PVA nanofibers for high-performance energy storage electrodes. Chem. Commun. 53(83), 11441–11444 (2017). https://doi.org/10.1039/C7CC05206E

    Article  CAS  Google Scholar 

  6. X. Yang, P. Wang, Y. Tang, C. Peng, Y. Lai, J. Li, Z. Zhang, Bimetallic ZIF–derived polyhedron ZnCo2O4 anchored on the reduced graphene oxide as an anode for sodium-ion battery. Ionics 25(6), 2945–2950 (2019). https://doi.org/10.1007/s11581-019-02982-x

    Article  CAS  Google Scholar 

  7. N. Du, Y. Xu, H. Zhang, J. Yu, C. Zhai, D. Yang, Porous ZnCo2O4 nanowires synthesis via sacrificial templates: high-performance anode materials of Li-ion batteries. Inorg. Chem. 50(8), 3320–3324 (2011). https://doi.org/10.1021/ic102129w

    Article  CAS  Google Scholar 

  8. J. Chen, Q. Ru, Y. Mo, S. Hu, X. Hou, Design and synthesis of hollow NiCo2O4 nanoboxes as anodes for lithium-ion and sodium-ion batteries. Phys. Chem. Chem. Phys. 18(28), 18949–18957 (2016). https://doi.org/10.1039/C6CP02871C

    Article  CAS  Google Scholar 

  9. J. Xu, B. Yan, H. Maleki Kheimeh Sari, Y. Hao, D. **ong, S. Dou, W. Liu, H. Kou, D. Li, X. Li, Mesoporous ZnCo2O4/rGO nanocomposites enhancing sodium storage. Nanotechnology 30(23), 234005 (2019). https://doi.org/10.1088/1361-6528/ab0504

    Article  CAS  Google Scholar 

  10. Z. Zhang, Y. Huang, X. Liu, X. Wang, P. Liu, Yolk-shell structured ZnCo2O4 spheres anchored on reduced graphene oxide with enhance lithium/sodium storage performance. Electrochim. Acta 342, 136104 (2020). https://doi.org/10.1016/j.electacta.2020.136104

    Article  CAS  Google Scholar 

  11. R. Chu, H. Song, Z. Ullah, Z. Guan, Y. Zhang, L. Zhao, M. Chen, W. Li, Q. Li, L. Liu, ZIF-8 derived nitrogen-doped carbon composites boost the rate performance of organic cathodes for sodium ion batteries. Electrochim. Acta 362, 137115 (2020). https://doi.org/10.1016/j.electacta.2020.137115

    Article  CAS  Google Scholar 

  12. Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W.-C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, Core–shell ZIF-8@ ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 140(7), 2610–2618 (2018)

    Article  CAS  Google Scholar 

  13. G. Kaur, R.K. Rai, D. Tyagi, X. Yao, P.-Z. Li, X.-C. Yang, Y. Zhao, Q. Xu, S.K. Singh, Room-temperature synthesis of bimetallic Co–Zn based zeolitic imidazolate frameworks in water for enhanced CO2 and H2 uptakes. J. Mater. Chem. A 4(39), 14932–14938 (2016). https://doi.org/10.1039/C6TA04342A

    Article  CAS  Google Scholar 

  14. P. Bala, B. Samantaray, S. Srivastava, Dehydration transformation in Ca-montmorillonite. Bull. Mater. Sci. 23, 61–67 (2012). https://doi.org/10.1007/BF02708614

    Article  Google Scholar 

  15. K. Zhou, B. Mousavi, Z. Luo, S. Phatanasri, S. Chaemchuen, F. Verpoort, Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. J. Mater. Chem. A 5(3), 952–957 (2017). https://doi.org/10.1039/C6TA07860E

    Article  CAS  Google Scholar 

  16. C.M. Pelicano, N. Rapadas, E. Magdaluyo Jr, X-ray peak profile analysis of zinc oxide nanoparticles formed by simple precipitation method (Vol. 1901) (2017)

  17. N.A.H.M. Nordin, A.F. Ismail, A. Mustafa, R.S. Murali, T. Matsuura, The impact of ZIF-8 particle size and heat treatment on CO2/CH4 separation using asymmetric mixed matrix membrane. RSC Adv. 4(94), 52530–52541 (2014). https://doi.org/10.1039/C4RA08460H

    Article  CAS  Google Scholar 

  18. C. Young, R.R. Salunkhe, J. Tang, C.-C. Hu, M. Shahabuddin, E. Yanmaz, M.S.A. Hossain, J.H. Kim, Y. Yamauchi, Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Phys. Chem. Chem. Phys. 18(42), 29308–29315 (2016). https://doi.org/10.1039/C6CP05555A

    Article  CAS  Google Scholar 

  19. Z. Lendzion-Bielun, U. Narkiewicz, W. Arabczyk, Cobalt-based catalysts for ammonia decomposition. Materials 6, 24002409 (2013)

    Article  Google Scholar 

  20. A. Nulu, V. Nulu, K.Y. Sohn, Effect of cobalt do** on enhanced lithium storage performance of nanosilicon. ChemElectroChem 8(7), 1259–1269 (2021). https://doi.org/10.1002/celc.202001533

    Article  CAS  Google Scholar 

  21. P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 98–100 (1918)

  22. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11(2), 102–113 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  23. G. Fan, Y. Wen, B. Liu, W. Yang, An insight into the influence of crystallite size on the performances of microsized spherical Li(Ni0.5Co0.2Mn0.3)O2 cathode material composed of aggregated nanosized particles. J. Nanopart. Res. 20(2), 43 (2018). https://doi.org/10.1007/s11051-018-4147-0

    Article  CAS  Google Scholar 

  24. L.-B. Ren, W. Hua, Z.-D. Hou, J.-G. Wang, Rational construction of CoP@C hollow structure for ultrafast and stable sodium energy storage. Rare Met. 41(6), 1859–1869 (2022). https://doi.org/10.1007/s12598-021-01930-x

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Higher Education Malaysia and Universiti Malaya, FRGS/1/2018/STG07/UM/02/8 and SATU Joint Research Grant, ST033-2020.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of study: SRM and ISI, acquisition of data: NSK, ISI, and NFMY, data curation and writing and preparation of the original draft: NSK and ISI, supervision: SRM and NHI, validation and writing, reviewing, and editing of the manuscript: SRM and NHI.

Corresponding author

Correspondence to S. R. Majid.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 322 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imaduddin, I.S., Majid, S.R., Kamaruddin, N.S. et al. Capacity determination of ZnCo0.26O1.63–N0.18C0.82 derived from bimetallic zeolitic imidazolate framework as anode in sodium-ion battery. J Mater Sci: Mater Electron 33, 25263–25273 (2022). https://doi.org/10.1007/s10854-022-09233-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09233-2

Navigation