Log in

Severe embrittlement of copper pillar bumps electrodeposited using JGB as leveler

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the electroplating of copper pillar bumps in wafer used for chip-scale interconnect was investigated. It was found that the shear strength of copper pillar bumps sharply dropped and accordingly the fracture changed from ductile mode into brittle mode with the increase of leveler-Janus green B (JGB) concentration in electrolyte. Severe embrittlement could even cause a spontaneous fracture when the JGB concentration was above 20 ppm. It was believed that this severe embrittlement was attributed to the excessive incorporation of JGB into the deposited Cu. Before the JGB desorbed from the cathode, the incorporation amount of JGB into the growing Cu increased to a peak value with the continuous increase of adsorption. Meanwhile, the incorporation amount of JGB was strongly dependent on its concentration in the electrolyte. The severe embrittlement would be caused at the location with peak amount of incorporation within the deposited Cu when the JGB concentration reached a certain value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. A. Yeoh, M. Chang, C. Pelto, T.L. Huang, S. Balakrishnan, G. Leatherman, S. Agraharam, G. Wang, Z. Wang, D. Chiang, P. Stover, P. Brandenburger, in Proceedings - Electronic Components and Technology Conference, vol. 2006 (2006), pp. 1611–1615

  2. N. Zhao, M.L. Huang, Y. Zhong, H.T. Ma, X.M. Pan, J. Mater. Sci. Mater. Electron. 26, 345 (2015)

    Article  CAS  Google Scholar 

  3. M.H. Jeong, J.W. Kim, B.H. Kwak, Y.B. Park, B.J. Kim, Y.C. Joo, in BIODEVICES 2011 - Proc. Int. Conf. Biomed. Electron. Devices 311 (2011)

  4. B.J. Kim, G.T. Lim, J. Kim, K. Lee, Y.B. Park, H.Y. Lee, Y.C. Joo, J. Electron. Mater. 39, 2281 (2010)

    Article  CAS  Google Scholar 

  5. Y. Chen, W. He, X. Chen, C. Wang, Z. Tao, S. Wang, G. Zhou, M. Moshrefi-Torbati, Electrochim. Acta 120, 293 (2014)

    Article  CAS  Google Scholar 

  6. W. Koh, B. Lin, J. Tai, in ICEPT-HDP 2011 Proceedings – 2011 International Conference on Electronic Packaging Technology and High Density Packaging (2011), pp. 1133–1137

  7. W.W. Flack, H.A. Nguyen, E. Capsuto, C. McEwen, in Proceedings of the International Symposium and Exhibition on Advanced Packaging Materials Processes, Properties and Interfaces (2007), pp. 208–213

  8. P.T. Lee, Y.S. Wu, P.C. Lin, C.C. Chen, W.Z. Hsieh, C.E. Ho, Surf. Coat. Technol 320, 559 (2017)

    Article  CAS  Google Scholar 

  9. Y.S. Wang, W.H. Lee, S.C. Chang, J.N. Nian, Y.L. Wang, Thin Solid Films 544, 157 (2013)

    Article  CAS  Google Scholar 

  10. L. Yin, F. Wafula, N. Dimitrov, P. Borgesen, J. Electron. Mater. 41, 302 (2012)

    Article  CAS  Google Scholar 

  11. V. Luo, X.T. Xue, K.C. Yu, J. Meng, H.L. Lu, D.W. Zhang, J. Electrochem. Soc. 163, E39 (2016)

    Article  CAS  Google Scholar 

  12. Y.-B. Li, W. Wang, Y.-L. Li, J. Electrochem. Soc. 156, D119 (2009)

    Article  CAS  Google Scholar 

  13. M. Hasegawa, Y. Negishi, T. Nakanishi, T. Osaka, J. Electrochem. Soc. 152, C221 (2005)

    Article  CAS  Google Scholar 

  14. K. Kondo, T. Matsumoto, K. Watanabe, J. Electrochem. Soc. 151, C250 (2004)

    Article  CAS  Google Scholar 

  15. B.H. Wu, C.C. Wan, Y.Y. Wang, J. Appl. Electrochem. 33, 823 (2003)

    Article  CAS  Google Scholar 

  16. T.P. Moffat, J.E. Bonevich, W.H. Huber, A. Stanishevsky, D.R. Kelly, G.R. Stafford, D. Josell, J. Electrochem. Soc. 147, 4524 (2000)

    Article  CAS  Google Scholar 

  17. Z.V. Feng, X. Li, A.A. Gewirth, J. Phys. Chem. B 107, 9415 (2003)

    Article  CAS  Google Scholar 

  18. H.P. Zhu, Q.S. Zhu, X. Zhang, C.Z. Liu, J.J. Wang, J. Electrochem. Soc. 164, D645 (2017)

    Article  CAS  Google Scholar 

  19. W.P. Dow, C.W. Liu, J. Electrochem. Soc. 153, C190 (2006)

    Article  CAS  Google Scholar 

  20. W.P. Dow, H.S. Huang, M.Y. Yen, H.C. Huang, J. Electrochem. Soc. 152, C425 (2005)

    Article  CAS  Google Scholar 

  21. J. Tang, Q.S. Zhu, Y. Zhang, X. Zhang, J.D. Guo, J.K. Shang, ECS Electrochem. Lett. 4, D28 (2015)

    Article  CAS  Google Scholar 

  22. J.M.E. Harper, C. Cabral, P.C. Andricacos, L. Gignac, I.C. Noyan, K.P. Rodbell, CK and Hu, J. Appl. Phys. 564, 387 (1999)

    CAS  Google Scholar 

  23. M. Stangl, M. Liptak, A. Fletcher, J. Acker, J. Thomas, H. Wendrock, S. Oswald, K. Wetzig, Microelectron. Eng. 85, 534 (2008)

    Article  CAS  Google Scholar 

  24. F. Wafula, L. Yin, P. Borgesen, D. Andala, N. Dimitrov, J. Electron. Mater. 41, 1898 (2012)

    Article  CAS  Google Scholar 

  25. Y. **, J.Y. Kim, Electrochim. Acta 56, 5514 (2008)

    Google Scholar 

  26. H. Lee, T.Y. Yu, H.K. Cheng, K.C. Liu, P.F. Chan, W.P. Dow, C.M. Chen, J. Electrochem. Soc. 164, D457 (2017)

    Article  CAS  Google Scholar 

  27. Q.S. Zhu, X. Zhang, S. Li, C. Liu, C.-F. Li, J. Electrochem. Soc. 166, D3097 (2019)

    Article  CAS  Google Scholar 

  28. T.P. Moffat, B. Baker, D. Wheeler, D. Josell, Electrochem. Solid-State Lett. 6 (2003)

  29. T.P. Moffat, J.E. Bonevich, W.H. Huber, J. Electrochem. Soc. 147, 4524 (2000)

    Article  CAS  Google Scholar 

  30. D. Josell, D. Wheeler, W.H. Huber, J.E. Bonevich, T.P. Moffat, J. Electrochem. Soc. 148, C767 (2001)

    Article  CAS  Google Scholar 

  31. N.T.M. Hai, J. Furrer, E. Barletta, N. Luedi, P. Broekmann, J. Electrochem. Soc. 161, D381 (2014)

    Article  CAS  Google Scholar 

  32. P. Broekmann, A. Fluegel, C. Emnet, M. Arnold, C. Roeger-Goepfert, A. Wagner, N.T.M. Hai, D. Mayer, Electrochim. Acta 56, 4724 (2011)

    Article  CAS  Google Scholar 

  33. S.-K. Kim, D. Josell, T.P. Moffat, J. Electrochem. Soc. 153, C616 (2006)

    Article  CAS  Google Scholar 

  34. W.-P. Dow, C.-C. Li, M.-W. Lin, G.-W. Su, C.-C. Huang, J. Electrochem. Soc. 156, D314 (2009)

    Article  CAS  Google Scholar 

  35. Y. Liu, J. Wang, L. Yin, P. Kondos, C. Parks, P. Borgesen, D.W. Henderson, E.J. Cotts, N. Dimitrov, J. Appl. Electrochem. 38, 1695 (2008)

    Article  CAS  Google Scholar 

  36. K. Lu, L. Lu, S. Suresh, Science 324, 349 (2009)

    Article  CAS  Google Scholar 

  37. G. Ross, P. Malmberg, V. Vuorinen, M. Paulasto-Krockel, ACS Appl. Electron. Mater. 1, 88 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Science and Technology Plan Project of Yunnan province under the Grant No. 202101BC070001-007, Yunnan Science and Technology Major Project under the Grant No. 2019ZE001, and the National Natural Science Foundation of China (NSFC), under the Grant Nos. 51471180 and 51971231. The authors thank Jiangyin Changdian Advanced Packaging Co., Ltd., for providing the required materials and helpful discussion. One of authors, Ding, also acknowledges Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences for offering a fellowship.

Funding

This study was financially supported by the Science and Technology Plan Project of Yunnan province under the Grant No. 202101BC070001-007, Yunnan Science and Technology Major Project under the Grant No. 202002AB080001, and the National Natural Science Foundation of China (NSFC), under the Grant Nos. 51471180 and 51971231.

Author information

Authors and Affiliations

Authors

Contributions

ZD: Conceptualization, Methodology, Validation, Investigation, Writing—original manuscript, and Writing—Original Draft. XW: Conceptualization, Methodology, Validation, Investigation, and Writing—review and editing. WW: Investigation, Writing—review and editing, and Visualization. SC: Data curation, Conceptualization, Supervision, Project administration, Funding acquisition, and Writing—review and editing. JG: Mechanism verification, and Writing—review and editing. QZ: Project administration, Funding acquisition, and Writing—review and editing.

Corresponding authors

Correspondence to **ao-**g Wang or Qing-sheng Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Zf., Wang, Xj., Wang, Wd. et al. Severe embrittlement of copper pillar bumps electrodeposited using JGB as leveler. J Mater Sci: Mater Electron 33, 19026–19035 (2022). https://doi.org/10.1007/s10854-022-08741-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08741-5

Navigation