Log in

Hot carrier photocatalysis using bimetallic Au@Pt hemispherical core–shell nanoislands

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the fabrication of core–shell Au@Pt nanoislands grown on glass substrates using a facile and reproducible combination of magnetron sputtering and thermal annealing. Au@Pt NPs exhibit a lattice strain of ~ 0.2% and a slightly positively charged Au core due to electron transfer from Au to Pt during equilibration. The localized surface plasmon resonance peak of Au redshifts incrementally from 2.13 to 2.0 eV and broadens in a controllable manner with the addition of ultrathin Pt shells (1–3 nm). This has been linked to the hemispherical morphology of the nanoislands and the high index glass substrate with subsequent resonance peak broadening as a consequence of the high annealing temperatures utilized. The quality factor of the LSPR resonance decreased gradually from ~ 13 to ~ 3 as bare Au nanoislands were coated with 3 nm of Pt. The Au@Pt nanoislands demonstrated superior methylene blue degradation performance (up to efficiencies of 31%) due to the hot hole injection from the bimetallic nanoparticle into the dye molecule despite the absence of any semiconducting photocatalytic support. Raman thermometry studies involving Stokes and anti-Stokes spectra helped shed light on the hot electron dynamics of the composite system and validated hot carrier injection from Au to Pt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Research data will be made available by the authors upon reasonable request.

References

  1. C. Engelbrekt, K.T. Crampton, D.A. Fishman, M. Law, V.A. Apkarian, ACS Nano 14, 5061 (2020). https://doi.org/10.1021/acsnano.0c01653

    Article  CAS  Google Scholar 

  2. A.P. Manuel, A. Kirkey, N. Mahdi, K. Shankar, J. Mater. Chem. C 7, 1821 (2019). https://doi.org/10.1039/c8tc05054f

    Article  CAS  Google Scholar 

  3. S. Linic, P. Christopher, D.B. Ingram, Nat. Mater. 10, 911 (2011). https://doi.org/10.1038/nmat3151

    Article  CAS  Google Scholar 

  4. S. Zeng, E. Vahidzadeh, C.G. van Essen et al., Appl. Catal. B Environ. 267, 118644 (2020). https://doi.org/10.1016/j.apcatb.2020.118644

    Article  CAS  Google Scholar 

  5. S. Farsinezhad, T. Shanavas, N. Mahdi et al., Nanotechnology 29, 154006 (2018)

    Article  Google Scholar 

  6. S. Zeng, T. Muneshwar, S. Riddell et al., Catalysts 11, 1374 (2021)

    Article  CAS  Google Scholar 

  7. W. Xu, H. Liu, D. Zhou et al., Nano Today 33, 100892 (2020)

    Article  CAS  Google Scholar 

  8. M. Ivanchenko, V. Nooshnab, A.F. Myers, N. Large, A.J. Evangelista, H. **g, Nano Res. 15, 1579 (2022)

    Article  CAS  Google Scholar 

  9. F. Michael, Philos. Trans. R. Soc. Lond. 147, 145 (1857)

    Google Scholar 

  10. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Book  Google Scholar 

  11. E.J. Zeman, G.C. Schatz, J. Phys. Chem. 91, 634 (1987). https://doi.org/10.1021/j100287a028

    Article  CAS  Google Scholar 

  12. G.V. Hartland, J. Phys. Chem. Lett. 5, 1583 (2014). https://doi.org/10.1021/jz500703x

    Article  CAS  Google Scholar 

  13. G.V. Hartland, Chem. Rev. 111, 3858 (2011). https://doi.org/10.1021/cr1002547

    Article  CAS  Google Scholar 

  14. A.P. Manuel, K. Shankar, Nanomaterials 11, 1249 (2021). https://doi.org/10.3390/nano11051249

    Article  CAS  Google Scholar 

  15. K. Sytwu, M. Vadai, J.A. Dionne, Adv. Phys. X 4, 1619480 (2019). https://doi.org/10.1080/23746149.2019.1619480

    Article  CAS  Google Scholar 

  16. U. Aslam, V.G. Rao, S. Chavez, S. Linic, Nat. Catal. 1, 656 (2018). https://doi.org/10.1038/s41929-018-0138-x

    Article  Google Scholar 

  17. C. Zhan, X.-J. Chen, J. Yi, J.-F. Li, D.-Y. Wu, Z.-Q. Tian, Nat. Rev. Chem. 2, 216 (2018). https://doi.org/10.1038/s41570-018-0031-9

    Article  Google Scholar 

  18. S. Linic, U. Aslam, C. Boerigter, M. Morabito, Nat. Mater. 14, 567 (2015). https://doi.org/10.1038/nmat4281

    Article  CAS  Google Scholar 

  19. S. Sim, A. Beierle, P. Mantos, S. McCrory, R.P. Prasankumar, S. Chowdhury, Nanoscale 12, 10284 (2020). https://doi.org/10.1039/D0NR00831A

    Article  CAS  Google Scholar 

  20. S. Mukherjee, F. Libisch, N. Large et al., Nano Lett. 13, 240 (2013). https://doi.org/10.1021/nl303940z

    Article  CAS  Google Scholar 

  21. H. Huang, L. Zhang, Z. Lv et al., J. Am. Chem. Soc. 138, 6822 (2016). https://doi.org/10.1021/jacs.6b02532

    Article  CAS  Google Scholar 

  22. R. Long, Z. Rao, K. Mao et al., Angew. Chem. Int. Ed. 54, 2425 (2015). https://doi.org/10.1002/anie.201407785

    Article  CAS  Google Scholar 

  23. F. Wang, C. Li, H. Chen et al., J. Am. Chem. Soc. 135, 5588 (2013). https://doi.org/10.1021/ja310501y

    Article  CAS  Google Scholar 

  24. J.R. Adleman, D.A. Boyd, D.G. Goodwin, D. Psaltis, Nano Lett. 9, 4417 (2009). https://doi.org/10.1021/nl902711n

    Article  CAS  Google Scholar 

  25. L. Guo, Q. Sun, K. Marcus et al., J. Mater. Chem. A 6, 22005 (2018). https://doi.org/10.1039/C8TA02170H

    Article  CAS  Google Scholar 

  26. J.M. Walker, L. Gou, S. Bhattacharyya, S.E. Lindahl, J.M. Zaleski, Chem. Mater. 23, 5275 (2011). https://doi.org/10.1021/cm202741p

    Article  CAS  Google Scholar 

  27. K.M. Haas, B.J. Lear, Chem. Sci. 6, 6462 (2015). https://doi.org/10.1039/C5SC02149A

    Article  CAS  Google Scholar 

  28. T.P. Araujo, J. Quiroz, E.C.M. Barbosa, P.H.C. Camargo, Curr. Opin. Colloid Interface Sci. 39, 110 (2019). https://doi.org/10.1016/j.cocis.2019.01.014

    Article  CAS  Google Scholar 

  29. E. Vahidzadeh, S. Zeng, A.P. Manuel et al., ACS Appl. Mater. Interfaces 13, 7248 (2021). https://doi.org/10.1021/acsami.0c21067

    Article  CAS  Google Scholar 

  30. V. Amendola, R. Pilot, M. Frasconi, O.M. Maragò, M.A. Iatì, J. Phys.: Condens. Matter 29, 203002 (2017). https://doi.org/10.1088/1361-648x/aa60f3

    Article  CAS  Google Scholar 

  31. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668 (2003). https://doi.org/10.1021/jp026731y

    Article  CAS  Google Scholar 

  32. D.F. Swearer, H. Zhao, L. Zhou et al., Proc. Natl. Acad. Sci. 113, 8916 (2016). https://doi.org/10.1073/pnas.1609769113

    Article  CAS  Google Scholar 

  33. C. Zhang, H. Zhao, L. Zhou et al., Nano Lett. 16, 6677 (2016). https://doi.org/10.1021/acs.nanolett.6b03582

    Article  CAS  Google Scholar 

  34. A. Joplin, S.A. Hosseini-Jebeli, E. Sung et al., ACS Nano 11, 12346 (2017). https://doi.org/10.1021/acsnano.7b06239

    Article  CAS  Google Scholar 

  35. L. Ranno, S.D. Forno, J. Lischner, NPJ Comp. Mater. 4, 31 (2018). https://doi.org/10.1038/s41524-018-0088-5

    Article  CAS  Google Scholar 

  36. C. Zhang, B.-Q. Chen, Z.-Y. Li, Y. **a, Y.-G. Chen, J. Phys. Chem. C 119, 16836 (2015). https://doi.org/10.1021/acs.jpcc.5b04232

    Article  CAS  Google Scholar 

  37. S. Chavez, U. Aslam, S. Linic, ACS Energy Lett. 3, 1590 (2018). https://doi.org/10.1021/acsenergylett.8b00841

    Article  CAS  Google Scholar 

  38. M.G. Blaber, M.D. Arnold, M.J. Ford, J. Phys.: Condens. Matter 22, 143201 (2010). https://doi.org/10.1088/0953-8984/22/14/143201

    Article  CAS  Google Scholar 

  39. Y. Zhang, S. He, W. Guo et al., Chem. Rev. 118, 2927 (2018). https://doi.org/10.1021/acs.chemrev.7b00430

    Article  CAS  Google Scholar 

  40. W. Ye, H. Kou, Q. Liu, J. Yan, F. Zhou, C. Wang, Int. J. Hydrogen Energy 37, 4088 (2012). https://doi.org/10.1016/j.ijhydene.2011.11.132

    Article  CAS  Google Scholar 

  41. S.-C. Lin, C.-S. Hsu, S.-Y. Chiu, T.-Y. Liao, H.M. Chen, J. Am. Chem. Soc. 139, 2224 (2017). https://doi.org/10.1021/jacs.6b09080

    Article  CAS  Google Scholar 

  42. U. Aslam, S. Chavez, S. Linic, Nat. Nanotechnol. 12, 1000 (2017). https://doi.org/10.1038/nnano.2017.131

    Article  CAS  Google Scholar 

  43. Z. Zheng, T. Tachikawa, T. Majima, J. Am. Chem. Soc. 136, 6870 (2014). https://doi.org/10.1021/ja502704n

    Article  CAS  Google Scholar 

  44. J. Guo, Y. Zhang, L. Shi et al., J. Am. Chem. Soc. 139, 17964 (2017). https://doi.org/10.1021/jacs.7b08903

    Article  CAS  Google Scholar 

  45. L. Zhou, D.F. Swearer, C. Zhang et al., Science 362, 69 (2018). https://doi.org/10.1126/science.aat6967

    Article  CAS  Google Scholar 

  46. H.F. Zarick, A. Boulesbaa, A.A. Puretzky et al., Nanoscale 9, 1475 (2017). https://doi.org/10.1039/C6NR08347A

    Article  CAS  Google Scholar 

  47. Z. Yu, Y. Gao, L. Sang, L. Lei, Catal. Sci. Technol. 11, 6529 (2021). https://doi.org/10.1039/D1CY01072G

    Article  CAS  Google Scholar 

  48. M.J. Weber, A.J.M. Mackus, M.A. Verheijen, C. van der Marel, W.M.M. Kessels, Chem. Mater. 24, 2973 (2012). https://doi.org/10.1021/cm301206e

    Article  CAS  Google Scholar 

  49. A.P. Manuel, P. Barya, S. Riddell, S. Zeng, K.M. Alam, K. Shankar, Nanotechnology 31, 365301 (2020). https://doi.org/10.1088/1361-6528/ab814c

    Article  CAS  Google Scholar 

  50. C. Boerigter, U. Aslam, S. Linic, ACS Nano 10, 6108 (2016). https://doi.org/10.1021/acsnano.6b01846

    Article  CAS  Google Scholar 

  51. K. Wu, J. Chen, J.R. McBride, T. Lian, Science 349, 632 (2015). https://doi.org/10.1126/science.aac5443

    Article  CAS  Google Scholar 

  52. T.H. Nguyen, T.A.T. Do, H.T. Giang, T.G. Ho, Q.N. Pham, M.T. Man, J. Mater. Sci.: Mater. Electron. 31, 14946 (2020). https://doi.org/10.1007/s10854-020-04056-5

    Article  CAS  Google Scholar 

  53. R. Kisslinger, S. Riddell, A.P. Manuel et al., ACS Appl. Mater. Interfaces 13, 4340 (2021). https://doi.org/10.1021/acsami.0c18580

    Article  CAS  Google Scholar 

  54. E. Vahidzadeh, S. Zeng, K.M. Alam et al., ACS Appl. Mater. Interfaces 13, 42741 (2021). https://doi.org/10.1021/acsami.1c10698

    Article  CAS  Google Scholar 

  55. L. Liang, Y. Lv, Z. Yu et al., J. Mater. Sci.: Mater. Electron. 32, 18646 (2021). https://doi.org/10.1007/s10854-021-06352-0

    Article  CAS  Google Scholar 

  56. N.R. Agarwal, P.M. Ossi, S. Trusso, Appl. Surf. Sci. 466, 19 (2019). https://doi.org/10.1016/j.apsusc.2018.09.251

    Article  CAS  Google Scholar 

  57. H. Ben Wannes, R.B. Zaghouani, R. Ouertani et al., Mater. Sci. Semicond. Process. 74, 80 (2018). https://doi.org/10.1016/j.mssp.2017.10.017

    Article  CAS  Google Scholar 

  58. S.J.S. Qazi, A.R. Rennie, J.K. Cockcroft, M. Vickers, J. Colloid Interface Sci. 338, 105 (2009). https://doi.org/10.1016/j.jcis.2009.06.006

    Article  CAS  Google Scholar 

  59. P. Scherrer, Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  60. J.I. Langford, A. Wilson, J. Appl. Crystallogr. 11, 102 (1978)

    Article  CAS  Google Scholar 

  61. V. Uvarov, I. Popov, Mater. Charact. 85, 111 (2013)

    Article  CAS  Google Scholar 

  62. P.P. Sahay, R.K. Nath, Sens. Actuators B Chem. 134, 654 (2008). https://doi.org/10.1016/j.snb.2008.06.006

    Article  CAS  Google Scholar 

  63. M. Pelton, in ed. by G.W. Bryant. Wiley, Hoboken (2013)

  64. P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stockman, Nano Lett. 4, 899 (2004). https://doi.org/10.1021/nl049681c

    Article  CAS  Google Scholar 

  65. E.D. Palik in ed. by E.D. Palik, G. Ghosh (eds)

  66. G. Geng, P. Chen, B. Guan et al., RSC Adv. 7, 51838 (2017). https://doi.org/10.1039/C7RA11188F

    Article  CAS  Google Scholar 

  67. T. Ozaki, Phys. Rev. B 67, 155108 (2003). https://doi.org/10.1103/PhysRevB.67.155108

    Article  CAS  Google Scholar 

  68. G.B. Bachelet, D.R. Hamann, M. Schlüter, Phys. Rev. B 26, 4199 (1982). https://doi.org/10.1103/PhysRevB.26.4199

    Article  CAS  Google Scholar 

  69. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  70. M. Supur, S.R. Smith, R.L. McCreery, Anal. Chem. 89, 6463 (2017). https://doi.org/10.1021/acs.analchem.7b00362

    Article  CAS  Google Scholar 

  71. S.D. McGrane, D.S. Moore, P.M. Goodwin, D.M. Dattelbaum, Appl. Spectrosc. 68, 1279 (2014). https://doi.org/10.1366/14-07503

    Article  CAS  Google Scholar 

  72. M. Altomare, N.T. Nguyen, P. Schmuki, Chem. Sci. 7, 6865 (2016). https://doi.org/10.1039/C6SC02555B

    Article  CAS  Google Scholar 

  73. S. Yang, F. Xu, S. Ostendorp, G. Wilde, H. Zhao, Y. Lei, Adv. Funct. Mater. 21, 2446 (2011). https://doi.org/10.1002/adfm.201002387

    Article  CAS  Google Scholar 

  74. M. Kracker, W. Wisniewski, C. Rüssel, RSC Adv. 4, 48135 (2014). https://doi.org/10.1039/C4RA07296K

    Article  CAS  Google Scholar 

  75. C.M. Müller, F.C.F. Mornaghini, R. Spolenak, Nanotechnology 19, 485306 (2008). https://doi.org/10.1088/0957-4484/19/48/485306

    Article  CAS  Google Scholar 

  76. D.L. Smith, McGraw-Hill, New York (1995)

  77. D. Wang, X. Cui, Q. **ao et al., AIP Adv. 8, 065210 (2018). https://doi.org/10.1063/1.5027251

    Article  CAS  Google Scholar 

  78. M. Ma, H.A. Hansen, M. Valenti et al., Nano Energy 42, 51 (2017). https://doi.org/10.1016/j.nanoen.2017.09.043

    Article  CAS  Google Scholar 

  79. C. Tan, Y. Sun, J. Zheng et al., Sci. Re.p UK 7, 6347 (2017). https://doi.org/10.1038/s41598-017-06639-5

    Article  CAS  Google Scholar 

  80. B.G.C. Bond, Platin. Met. Rev. 51, 63 (2007). https://doi.org/10.1595/147106707X187353

    Article  CAS  Google Scholar 

  81. Y. Wang, M. Hou, J. Phys. Chem. C 116, 10814 (2012). https://doi.org/10.1021/jp302260b

    Article  CAS  Google Scholar 

  82. S. Farsinezhad, H. Sharma, K. Shankar, Phys. Chem. Chem. Phys. 17, 29723 (2015). https://doi.org/10.1039/C5CP05679A

    Article  CAS  Google Scholar 

  83. C.A. Rodríguez-Proenza, J.P. Palomares-Báez, M.A. Chávez-Rojo et al., Materials 11, 1882 (2018). https://doi.org/10.3390/ma11101882

    Article  CAS  Google Scholar 

  84. N. Goubet, I. Tempra, J. Yang et al., Nanoscale 7, 3237 (2015). https://doi.org/10.1039/C4NR06513A

    Article  CAS  Google Scholar 

  85. Y.U. Staechelin, D. Hoeing, F. Schulz, H. Lange, ACS Photon. 8, 752 (2021). https://doi.org/10.1021/acsphotonics.1c00078

    Article  CAS  Google Scholar 

  86. C.A. García-Negrete, B.R. Knappett, F.P. Schmidt et al., RSC Adv. 5, 55262 (2015). https://doi.org/10.1039/C5RA09808D

    Article  CAS  Google Scholar 

  87. J.W.J.P. Clarkson, P.M. Fauchet, Opt. Mater. Express 1, 970 (2011). https://doi.org/10.1364/OME.1.000970

    Article  CAS  Google Scholar 

  88. B.E. Sundquist, Acta Metall. 12, 67 (1964). https://doi.org/10.1016/0001-6160(64)90055-0

    Article  CAS  Google Scholar 

  89. V. Devaraj, H. Jeong, C. Kim, J.-M. Lee, J.-W. Oh, Coatings 9, 387 (2019)

    Article  CAS  Google Scholar 

  90. V. Devaraj, J.-M. Lee, S. Adhikari, M. Kim, D. Lee, J.-W. Oh, Nanoscale 12, 22452 (2020). https://doi.org/10.1039/D0NR07188A

    Article  CAS  Google Scholar 

  91. W. Haiss, N.T.K. Thanh, J. Aveyard, D.G. Fernig, Anal. Chem. 79, 4215 (2007). https://doi.org/10.1021/ac0702084

    Article  CAS  Google Scholar 

  92. M.-M. Jiang, H.-Y. Chen, B.-H. Li, K.-W. Liu, C.-X. Shan, D.-Z. Shen, J. Mater. Chem. C 2, 56 (2014). https://doi.org/10.1039/C3TC31910E

    Article  CAS  Google Scholar 

  93. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, J. Feldmann, Phys. Rev. Lett. 80, 4249 (1998). https://doi.org/10.1103/PhysRevLett.80.4249

    Article  CAS  Google Scholar 

  94. S. Farsinezhad, S.P. Banerjee, B. Bangalore Rajeeva et al., ACS Appl. Mater. Interface 9, 740 (2017). https://doi.org/10.1021/acsami.6b13164

    Article  CAS  Google Scholar 

  95. L. Bazán-Díaz, R. Mendoza-Cruz, C.-K. Liao, M.A. Mahmoud, J. Phys. Chem. C 123, 30509 (2019). https://doi.org/10.1021/acs.jpcc.9b07935

    Article  CAS  Google Scholar 

  96. D.-C. Marinica, J. Aizpurua, A.G. Borisov, Opt. Express 24, 23941 (2016). https://doi.org/10.1364/OE.24.023941

    Article  CAS  Google Scholar 

  97. S. Griffin, N.P. Montoni, G. Li et al., J. Phys. Chem. Lett. 7, 3825 (2016). https://doi.org/10.1021/acs.jpclett.6b01878

    Article  CAS  Google Scholar 

  98. J.-F. Li, Z.-L. Yang, B. Ren et al., Langmuir 22, 10372 (2006). https://doi.org/10.1021/la061366d

    Article  CAS  Google Scholar 

  99. C.A. Murray, J. Electron. Spectrosc. Relat. Phenom. 29, 371 (1983). https://doi.org/10.1016/0368-2048(83)80090-5

    Article  CAS  Google Scholar 

  100. S. Zou, M.J. Weaver, Anal. Chem. 70, 2387 (1998). https://doi.org/10.1021/ac9800154

    Article  CAS  Google Scholar 

  101. K. Zhang, Y. **ang, X. Wu et al., Langmuir 25, 1162 (2009). https://doi.org/10.1021/la803060p

    Article  CAS  Google Scholar 

  102. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, Science 302, 419 (2003). https://doi.org/10.1126/science.1089171

    Article  CAS  Google Scholar 

  103. B. Barman, H. Dhasmana, A. Verma, A. Kumar, D.N. Singh, V.K. Jain, Energy Environ. 29, 358 (2018). https://doi.org/10.1177/0958305X17750459

    Article  CAS  Google Scholar 

  104. R. Long, Y. Li, L. Song, Y. **ong, Small 11, 3873 (2015). https://doi.org/10.1002/smll.201403777

    Article  CAS  Google Scholar 

  105. C. Boerigter, R. Campana, M. Morabito, S. Linic, Nat. Commun. 7, 10545 (2016). https://doi.org/10.1038/ncomms10545

    Article  CAS  Google Scholar 

  106. Z. Zhang, U. Gernert, R.F. Gerhardt, E.-M. Höhn, D. Belder, J. Kneipp, ACS Catal. 8, 2443 (2018). https://doi.org/10.1021/acscatal.8b00101

    Article  CAS  Google Scholar 

  107. R. Sundararaman, P. Narang, A.S. Jermyn, W.A. Goddard Iii, H.A. Atwater, Nat. Commun. 5, 5788 (2014). https://doi.org/10.1038/ncomms6788

    Article  CAS  Google Scholar 

  108. O.A. Douglas-Gallardo, M. Berdakin, T. Frauenheim, C.G. Sánchez, Nanoscale 11, 8604 (2019). https://doi.org/10.1039/C9NR01352K

    Article  CAS  Google Scholar 

  109. A. Zielińska-Jurek, J. Nanomater. 2014, 208920 (2014). https://doi.org/10.1155/2014/208920

    Article  CAS  Google Scholar 

  110. R.H. Doremus, J. Chem. Phys. 40, 2389 (1964). https://doi.org/10.1063/1.1725519

    Article  Google Scholar 

  111. G.V. Hartland, L.V. Besteiro, P. Johns, A.O. Govorov, ACS Energy Lett. 2, 1641 (2017). https://doi.org/10.1021/acsenergylett.7b00333

    Article  CAS  Google Scholar 

  112. L.V. Besteiro, A.O. Govorov, J. Phys. Chem. C 120, 19329 (2016). https://doi.org/10.1021/acs.jpcc.6b05968

    Article  CAS  Google Scholar 

  113. A.M. Brown, R. Sundararaman, P. Narang, A.M. Schwartzberg, W.A. Goddard, H.A. Atwater, Phys. Rev. Lett. 118, 087401 (2017). https://doi.org/10.1103/PhysRevLett.118.087401

    Article  Google Scholar 

  114. J. Patterson, Lond. Edinb. Dublin Philos. Mag. J. Sci. 4, 652 (1902). https://doi.org/10.1080/14786440209462890

    Article  Google Scholar 

  115. G. Fischer, H. Hoffmann, J. Vancea, Phys. Rev. B 22, 6065 (1980). https://doi.org/10.1103/PhysRevB.22.6065

    Article  CAS  Google Scholar 

  116. S. Dutta, K. Sankaran, K. Moors et al., J. Appl. Phys. 122, 025107 (2017). https://doi.org/10.1063/1.4992089

    Article  CAS  Google Scholar 

  117. D. Gall, J. Appl. Phys. 127, 050901 (2020). https://doi.org/10.1063/1.5133671

    Article  CAS  Google Scholar 

  118. J.H. Hodak, A. Henglein, G.V. Hartland, J. Chem. Phys. 114, 2760 (2001). https://doi.org/10.1063/1.1339266

    Article  CAS  Google Scholar 

  119. R.C. Maher, C.M. Galloway, E.C. Le Ru, L.F. Cohen, P.G. Etchegoin, Chem. Soc. Rev. 37, 965 (2008). https://doi.org/10.1039/B707870F

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), Future Energy Systems (FES) CFREF, and the National Research Council – National Institute for Nanotechnology (NRC-NINT).

Author information

Authors and Affiliations

Authors

Contributions

APM: Conceptualization, Methodology, Formal analysis, Investigation, Writing—Original Draft, Visualization. SR: Methodology, Investigation. HR: Methodology, Formal analysis, Investigation, Writing—Original Draft. DV: Methodology, Formal analysis, Investigation. KMA: Methodology, Formal analysis, Investigation, Writing—Original Draft, Visualization. PK: Formal analysis, Investigation, Writing—Original Draft, Review & Editing. SG: Methodology, Investigation, Supervision, Project administration, Funding acquisition. AEK: Methodology, Investigation, Supervision, Investigation, Visualization. MS: Methodology. RLM: Supervision, Resources. KS: Supervision, Project administration, Methodology, Investigation, Writing—Review & Editing, Funding acquisition, Resources.

Corresponding author

Correspondence to Karthik Shankar.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manuel, A.P., Riddell, S., Rajashekhar, H. et al. Hot carrier photocatalysis using bimetallic Au@Pt hemispherical core–shell nanoislands. J Mater Sci: Mater Electron 33, 18134–18155 (2022). https://doi.org/10.1007/s10854-022-08671-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08671-2

Navigation