Log in

Undulated TiO2−x microtubes modified with multilayer MoS2 nanoflakes for high-performance photocatalytic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Due to the wide bandgap, TiO2 has a poor photocatalytic performance under visible light. Both defects and heterojunction can enhance the photocatalytic performance of TiO2; therefore, defects and heterojunction were combined to improve the activity of TiO2 that may be a novelty and feasible strategy. Herein, using the cotton fiber as the template, a special undulated TiO2−x microtube modified with MoS2 nanoflakes was synthesized via sol–gel process, hydrothermal treatment, and solid reduction method successively. The result of XPS and TEM analysis indicated the presence of Ti3+, oxygen vacancies (Ovs), and heterojunction in the TiO2−x/MoS2 composite. TiO2−x/MoS2 had a narrow energy bandgap (1.11 eV) and separated the electron–hole pair effectively. The degradation experiment of methylene blue (MB) under the visible light showed that compared with TiO2 (11.37%) and TiO2/MoS2 (45.81%), the TiO2−x/MoS2 composite had a higher degradation rate (91.32%) within 180 min. Besides, TiO2−x/MoS2 exhibited a higher photocurrent intensity (0.2 μA/cm−2) than TiO2/MoS2 (0.02 μA/cm−2) and TiO2 (0.0032 μA/cm−2). The excellent photocatalytic activity of TiO2−x/MoS2 can be attributed to the synergistic effect of heterojunction and defects, which improved the utilization of visible light significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are not publicly available. Data sharing not applicable to this article.

References

  1. H. Kisch, Angew. Chem. Int. Ed. Engl. 52, 3 (2013)

    Article  CAS  Google Scholar 

  2. X. Pang, N. Skillen, N. Gunaratne, D.W. Rooney, P.K.J. Robertson, J. Hazard. Mater. 402, 15 (2021)

    Article  CAS  Google Scholar 

  3. L. Wang, F. Meng, K. Li, F. Lu, Appl. Surf. Sci. 286, 22 (2013)

    Article  CAS  Google Scholar 

  4. M.R. Eskandarian, H. Choi, M. Fazli, M.H. Rasoulifard, Chem. Eng. J. 300, 25 (2016)

    Article  CAS  Google Scholar 

  5. J. Kim, W.H. Khoh, B.H. Wee, J.D. Hong, RSC Adv. 5, 13 (2015)

    Google Scholar 

  6. P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki, Nanoscale 2, 1 (2010)

    Article  Google Scholar 

  7. S.T. Myung, N. Takahashi, S. Komaba, C.S. Yoon, Y.K. Sun, K. Amine, H. Yashiro, Adv. Funct. Mater. 21, 17 (2011)

    Article  CAS  Google Scholar 

  8. Z. Dong, R. Zhou, L. **ong, H. Li, Q. Liu, L. Zheng, Z. Guo, Z. Deng, Nanoscale Adv. 2, 1 (2020)

    Article  Google Scholar 

  9. O.R. Fonseca-Cervantes, A. Pérez-Larios, V.H. Romero-Arellano, B. Sulbaran-Rangel, C.A. Guzmán-González, Processes 8, 9 (2020)

    Article  CAS  Google Scholar 

  10. G. Yang, Z. Jiang, H. Shi, T. **ao, Z. Yan, J. Mater. Chem. 20, 25 (2010)

    Google Scholar 

  11. S. Kenmoe, E. Spohr, J. Phys. Chem. C 123, 37 (2019)

    Article  CAS  Google Scholar 

  12. B. Zhao, X. Wang, Y. Zhang, J. Gao, Z. Chen, Z. Lu, J. Photochem. Photobiol. A 382, 15 (2019)

    Google Scholar 

  13. S. Akel, R. Boughaled, R. Dillert, M. El Azzouzi, D.W. Bahnemann, Molecules 25, 2 (2020)

    Article  CAS  Google Scholar 

  14. M.M. Momeni, Y. Ghayeb, J. Electroanal. Chem. 751, 15 (2015)

    Article  CAS  Google Scholar 

  15. S. Hu, B. Wang, M. Zhu, Y. Ma, J. Wang, Energ. Technol. 5, 9 (2017)

    Google Scholar 

  16. K. Xu, Z. Liu, S. Qi, Z. Yin, S. Deng, M. Zhang, Z. Sun, RSC Adv. 10, 57 (2020)

    Google Scholar 

  17. K. Yuan, Q. Cao, H.L. Lu, M. Zhong, X. Zheng, H.Y. Chen, T. Wang, J.J. Delaunay, W. Luo, L. Zhang, Y.Y. Wang, Y. Deng, S.-J. Ding, D.W. Zhang, J. Mater. Chem. A 5, 28 (2017)

    Google Scholar 

  18. W.Z. **ao, L. Xu, Q.Y. Rong, X.Y. Dai, C.P. Cheng, L.L. Wang, Appl. Surf. Sci. 504, 15 (2020)

    Article  CAS  Google Scholar 

  19. H. Yin, Y. Cao, T. Fan, B. Qiu, M. Zhang, J. Yao, P. Li, X. Liu, S. Chen, J. Alloys Compd. 824, 15 (2020)

    Article  CAS  Google Scholar 

  20. Z. Fan, F. Meng, J. Gong, H. Li, Y. Hu, D. Liu, Mater. Lett. 175, 25 (2016)

    Article  CAS  Google Scholar 

  21. B. Qiu, Y. Zhou, Y. Ma, X. Yang, W. Sheng, M. **ng, J. Zhang, Sci. Rep. 5, 18 (2015)

    Google Scholar 

  22. P. Wen, Y. Zhang, G. Xu, D. Ma, P. Qiu, X. Zhao, J. Mater. 5, 4 (2019)

    Google Scholar 

  23. L. Wang, F. Meng, Mater. Res. Bull. 48, 9 (2013)

    CAS  Google Scholar 

  24. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science 331, 6018 (2011)

    Google Scholar 

  25. M. Ye, J. Jia, Z. Wu, C. Qian, R. Chen, P.G. O’Brien, W. Sun, Y. Dong, G.A. Ozin, Adv. Energy Mater. 7, 4 (2017)

    Google Scholar 

  26. J. Zhao, L. Liu, Y. Zhang, Z. Feng, F. Zhao, W. Wang, Nano Res. 14, 1 (2020)

    Google Scholar 

  27. H.R. An, S.Y. Park, H. Kim, C.Y. Lee, S. Choi, S.C. Lee, S. Seo, E.C. Park, Y.K. Oh, C.G. Song, J. Won, Y.J. Kim, J. Lee, H.U. Lee, Y.C. Lee, Sci. Rep. 6, 18 (2016)

    Article  CAS  Google Scholar 

  28. M. Bellardita, C. Garlisi, L.Y. Ozer, A.M. Venezia, J. Sá, F. Mamedov, L. Palmisano, G. Palmisano, Appl. Surf. Sci. 510, 25 (2020)

    Article  CAS  Google Scholar 

  29. J. Song, M. Zheng, X. Yuan, Q. Li, F. Wang, L. Ma, Y. You, S. Liu, P. Liu, D. Jiang, L. Ma, W. Shen, J. Mater. Sci. 52, 12 (2017)

    Google Scholar 

  30. W. Fang, M. **ng, J. Zhang, Appl. Catal. B 160–161, 20 (2014)

    Google Scholar 

  31. R. Ren, Z. Wen, S. Cui, Y. Hou, X. Guo, J. Chen, Sci. Rep. 5, 10 (2015)

    Google Scholar 

  32. W. Gao, M. Wang, C. Ran, L. Li, Chem. Commun. 51, 9 (2015)

    Google Scholar 

  33. S. Kumar, N.L. Reddy, H.S. Kushwaha, A. Kumar, M.V. Shankar, K. Bhattacharyya, A. Halder, V. Krishnan, Chemsuschem 10, 18 (2017)

    Google Scholar 

  34. S. Zheng, L. Zheng, Z. Zhu, J. Chen, J. Kang, Z. Huang, D. Yang, Nanomicro Lett. 10, 4 (2018)

    Google Scholar 

  35. J. Zhou, J. Cao, Y. Zou, Y. Zhang, X. Liu, Microelectron. Eng. 176, 15 (2017)

    Article  CAS  Google Scholar 

  36. T.F. Jaramillo, K.P. Jorgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science 317, 5834 (2007)

    Article  CAS  Google Scholar 

  37. T.H.M. Lau, S. Wu, R. Kato, T.S. Wu, J. Kulhavý, J. Mo, J. Zheng, J.S. Foord, Y.L. Soo, K. Suenaga, M.T. Darby, S.C.E. Tsang, ACS Catal. 9, 8 (2019)

    Article  CAS  Google Scholar 

  38. J. Qiu, P. Zhang, M. Ling, S. Li, P. Liu, H. Zhao, S. Zhang, ACS Appl. Mater. Interfaces 4, 7 (2012)

    Google Scholar 

  39. B. Guo, K. Yu, H. Fu, Q. Hua, R. Qi, H. Li, H. Song, S. Guo, Z. Zhu, J. Mater. Chem. A 3, 12 (2015)

    Google Scholar 

  40. H. Tan, Z. Zhao, M. Niu, C. Mao, D. Cao, D. Cheng, P. Feng, Z. Sun, Nanoscale 6, 17 (2014)

    CAS  Google Scholar 

  41. Q. **ang, J. Yu, M. Jaroniec, J. Am. Chem. Soc. 134, 15 (2012)

    Article  CAS  Google Scholar 

  42. L.W. Zhang, H.B. Fu, Y.F. Zhu, Adv. Funct. Mater. 18, 15 (2008)

    Article  CAS  Google Scholar 

  43. X. Liu, Z. **ng, Y. Zhang, Z. Li, X. Wu, S. Tan, X. Yu, Q. Zhu, W. Zhou, Appl. Catal. B 201, 22 (2017)

    Article  CAS  Google Scholar 

  44. A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang, Appl. Catal. B 91, 1–2 (2009)

    Article  CAS  Google Scholar 

  45. X. Li, Y. Hou, Q. Zhao, G. Chen, Langmuir 27, 6 (2011)

    Google Scholar 

  46. Q. Kang, J. Cao, Y. Zhang, L. Liu, H. Xu, J. Ye, J. Mater. Chem. A. 1, 18 (2013)

    Google Scholar 

  47. C. Wang, L. Zhu, M. Wei, P. Chen, G. Shan, Water Res. 46, 3 (2012)

    Google Scholar 

  48. Z. Wang, W. Ma, C. Chen, H. Ji, J. Zhao, Chem. Eng. J. 170, 2–3 (2011)

    Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data analysis were performed by JH. Investigation was performed by HZ and ZC. Project supervision, experimental guidance, and theoretical analysis were performed by WZ and YZ. The first draft of the manuscript was written by JH. And all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wei **ao or Yanhua Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 327 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Zhang, H., Chen, Z. et al. Undulated TiO2−x microtubes modified with multilayer MoS2 nanoflakes for high-performance photocatalytic applications. J Mater Sci: Mater Electron 33, 18083–18095 (2022). https://doi.org/10.1007/s10854-022-08667-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08667-y

Navigation