Log in

Magnetodynamic properties on square patterned of FeGaB and Al2O3/FeGaB thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This article shows low dam** patterned FeGaB and Al2O3/FeGaB thin films. FeGaB has a lower dam** factor (0.0071) than the Al2O3/FeGaB thin film. The coercive field and magnetic anisotropy of Al2O3/FeGaB thin films are enhanced as a result of static magnetization (Magneto-Optical Kerr Effect). The magnetic anisotropy of the Al2O3/FeGaB film produces a larger magnetic domain evolution at 10.2 Oe than the FeGaB thin film. The magnetic domain wall velocity for the FeGaB thin film is shown to be larger utilizing micromagnetic modeling due to its low anisotropy and the impact of spin–orbit coupling. As a result of our findings, it can be employed in microwave and spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X. Qiu et al., Spin–orbit-torque engineering via oxygen manipulation. Nat. Nanotechnol. 10, 333–338 (2015). https://doi.org/10.1038/nnano.2015.18

    Article  CAS  Google Scholar 

  2. X. Fan et al., Observation of the nonlocal spin-orbital effective field. Nat. Commun. 4, 1–7 (2013)

    Google Scholar 

  3. L. Liu et al., Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012)

    Article  CAS  Google Scholar 

  4. S. Emori, U. Bauer, S.-M. Ahn, E. Martinez, G.S. Beach, Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013)

    Article  CAS  Google Scholar 

  5. S. Azzawi et al., Publisher's Note: Evolution of dam** in ferromagnetic/nonmagnetic thin film bilayers as a function of nonmagnetic layer thickness [Phys. Rev. B 93, 054402 (2016)]. Phys. Rev. B 93, 219902 (2016)

  6. S. Emori et al., Interfacial spin-orbit torque without bulk spin-orbit coupling. Phys. Rev. B 93, 180402 (2016). https://doi.org/10.1103/PhysRevB.93.180402

    Article  CAS  Google Scholar 

  7. E. Barati, M. Cinal, D. Edwards, A. Umerski, Gilbert dam** in magnetic layered systems. Phys. Rev. B 90, 014420 (2014)

    Article  CAS  Google Scholar 

  8. A. Ganguly et al., Tunable magnetization dynamics in interfacially modified Ni81Fe19/Pt bilayer thin film microstructures. Sci. Rep. 5, 1–8 (2015)

    Google Scholar 

  9. Y. Tserkovnyak, A. Brataas, G.E. Bauer, Enhanced gilbert dam** in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002)

    Article  CAS  Google Scholar 

  10. E. Jué et al., Chiral dam** of magnetic domain walls. Nat. Mater. 15, 272–277 (2016)

    Article  CAS  Google Scholar 

  11. I. Shahid, G. Yin, J. Yuan, Y. Ma, S. He, Rare Met. Mater. Eng. 47(7), 1951–1957 (2018)

    Article  Google Scholar 

  12. S. Goktas, A. Goktas, J. Alloys Compds. 863, 158734 (2021)

    Article  CAS  Google Scholar 

  13. C. Dong, M. Li, X. Liang, H. Chen, H. Zhou, X. Wang, Y. Gao, M.E. McConney, J.G. Jones, G.J. Brown, B.M. Howe, N.X. Sun, Appl. Phys. Lett. 113(26), 262401 (2018)

    Article  CAS  Google Scholar 

  14. F. Mikailzade, H. Türkan, F. Önal, M. Zarbali, A. Göktaş, A. Tumbul, Appl. Phys. A 127, 1–8 (2021)

    Article  CAS  Google Scholar 

  15. E. Šimánek, B. Heinrich, Gilbert dam** in magnetic multilayers. Phys. Rev. B 67, 144418 (2003)

    Article  CAS  Google Scholar 

  16. P. Deorani, H. Yang, Role of spin mixing conductance in spin pum**: enhancement of spin pum** efficiency in Ta/Cu/Py structures. Appl. Phys. Lett. 103, 232408 (2013)

    Article  CAS  Google Scholar 

  17. K. Yadagiri, T. Wu, The thickness of buffer layer and temperature dependent magneto dynamic properties of Ta/FeGaB/Ta tri-layer. J. Magn. Magn. Mater. 515, 167277 (2020)

    Article  CAS  Google Scholar 

  18. H. Ohmori, T. Hatori, S. Nakagawa, Perpendicular magnetic tunnel junction with tunneling magnetoresistance ratio of 64% using MgO (100) barrier layer prepared at room temperature. J. Appl. Phys. 103, 07A911 (2008)

    Article  CAS  Google Scholar 

  19. L.M. Loong et al., Flexible MgO barrier magnetic tunnel junctions. Adv. Mater. 28, 4983–4990 (2016)

    Article  CAS  Google Scholar 

  20. S. Tigunta, P. Khlikhum, P. Kidkhunthod, N. Chanlek, L. Supadee, Dissolution behavior of MgO thin film-barrier magnetic tunneling junctions. J. Mater. Sci.: Mater. Electron. 30, 6718–6724 (2019)

    CAS  Google Scholar 

  21. X. Liu, J. Shi, Magnetic tunnel junctions with Al2O3 tunnel barriers prepared by atomic layer deposition. Appl. Phys. Lett. 102, 202401 (2013)

    Article  CAS  Google Scholar 

  22. P. Harishsenthil, J. Chandrasekaran, R. Marnadu, P. Balraju, C. Mahendarn, Influence of high dielectric HfO2 thin films on the electrical properties of Al/HfO2/n-Si (MIS) structured Schottky barrier diodes. Physica B 594, 412336 (2020)

    Article  CAS  Google Scholar 

  23. J. Acharya, R. Goul, J.Z. Wu, High tunnelling magnetoresistance in magnetic tunnel junctions with sub-nm thick Al2O3 tunnel barriers fabricated using atomic layer deposition. ACS Appl. Mater. Interfaces 13, 15738 (2020)

    Article  CAS  Google Scholar 

  24. J. Acharya, J. Wilt, B. Liu, J. Wu, Probing the dielectric properties of ultrathin Al/Al2O3/Al trilayers fabricated using in situ sputtering and atomic layer deposition. ACS Appl. Mater. Interfaces 10, 3112–3120 (2018)

    Article  CAS  Google Scholar 

  25. T. Wu et al., Electrical and mechanical manipulation of ferromagnetic properties in polycrystalline nickel thin film. IEEE Magn. Lett. 2, 6000104–6000104 (2011)

    Article  CAS  Google Scholar 

  26. P. Liu, S. Gao, G. Zhang, Y. Huang, W. You, Ch. Renchao, Adv. Funct. Mater. 31, 2102812 (2021)

    Article  CAS  Google Scholar 

  27. X. Di, Y. Wang, Lu. Zhao, R. Cheng, L. Yang, Carbon 179, 566–578 (2021)

    Article  CAS  Google Scholar 

  28. Y. Wang, X. Di, Z. Lu, R. Cheng, X. Wu, P. Gao, Carbon 187, 404–414 (2022)

    Article  CAS  Google Scholar 

  29. R. Cheng, Y. Wang, X. Di, Z. Lu, P. Wang, M. Ma, J. Ye, J. Coll. Interface Sci. 609, 224–234 (2022)

    Article  CAS  Google Scholar 

  30. Y. Hui, T. Nan, N. Sun, M. Rinaldi, in 2013 IEEE 26th international conference on micro electro mechanical systems (MEMS). (IEEE), pp. 721–724

  31. T. Wu et al., Electric-poling-induced magnetic anisotropy and electric-field-induced magnetization reorientation in magnetoelectric Ni/(011)[Pb (Mg1/3Nb2/3) O3](1–x)-[PbTiO3] x heterostructure. J. Appl. Phys. 109, 07D732 (2011)

    Article  CAS  Google Scholar 

  32. T. Wu et al., Giant electric-field-induced reversible and permanent magnetization reorientation on magnetoelectric Ni/(011)[Pb (Mg1/3Nb2/3) O3](1–x)–[PbTiO3] x heterostructure. Appl. Phys. Lett. 98, 012504 (2011)

    Article  CAS  Google Scholar 

  33. J. Lou et al., Soft magnetism, magnetostriction, and microwave properties of FeGaB thin films. Appl. Phys. Lett. 91, 182504 (2007)

    Article  CAS  Google Scholar 

  34. S. Dong, J.-F. Li, D. Viehland, Vortex magnetic field sensor based on ring-type magnetoelectric laminate. Appl. Phys. Lett. 85, 2307–2309 (2004)

    Article  CAS  Google Scholar 

  35. T. Schneider et al., Realization of spin-wave logic gates. Appl. Phys. Lett. 92, 022505 (2008)

    Article  CAS  Google Scholar 

  36. L. Wang et al., Magnonic waveguide based on exchange-spring magnetic structure. AIP Adv. 8, 055103 (2018)

    Article  CAS  Google Scholar 

  37. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 38, R123 (2005)

    Article  CAS  Google Scholar 

  38. Y. Lin, N. Cai, J. Zhai, G. Liu, C.-W. Nan, Giant magnetoelectric effect in multiferroic laminated composites. Phys. Rev. B 72, 012405 (2005)

    Article  CAS  Google Scholar 

  39. S.S. Kalarickal et al., Ferromagnetic resonance linewidth in metallic thin films: comparison of measurement methods. J. Appl. Phys. 99, 093909 (2006)

    Article  CAS  Google Scholar 

  40. K. Yadagiri, Y. Wang, T. Wu, Temperature-dependent exchange stiffness of spin-wave in Ta/CoFeB by ferromagnetic resonance spectroscopy. IEEE Trans. Magn. 57, 1–7 (2020)

    Article  Google Scholar 

  41. C. Herring, C. Kittel, On the theory of spin waves in ferromagnetic media. Phys. Rev. 81, 869 (1951)

    Article  Google Scholar 

  42. C. Kittel, Interpretation of anomalous Larmor frequencies in ferromagnetic resonance experiment. Phys. Rev. 71, 270 (1947)

    Article  Google Scholar 

  43. M. Belmeguenai et al., Microstrip line ferromagnetic resonance and Brillouin light scattering investigations of magnetic properties of Co2 MnGe Heusler thin films. Phys. Rev. B 79, 024419 (2009)

    Article  CAS  Google Scholar 

  44. K. Yadagiri, Y. Wang, P. Wu et al., Ferromagnetic resonance properties of multilayer FeGaB/Ta/FeGaB structure. J. Mater. Sci.: Mater. Electron. 33, 3870–3879 (2022)

    CAS  Google Scholar 

  45. A. Vansteenkiste, B. Van de Wiele, MuMax: a new high-performance micromagnetic simulation tool. J. Magn. Magn. Mater. 323, 2585–2591 (2011)

    Article  CAS  Google Scholar 

  46. A. Vansteenkiste et al., The design and verification of MuMax3. AIP Adv. 4, 107133 (2014)

    Article  CAS  Google Scholar 

  47. T. Broomhall, T. Hayward, Suppression of stochastic domain wall pinning through control of gilbert dam**. Sci. Rep. 7, 1–12 (2017)

    Article  CAS  Google Scholar 

  48. A. Thiaville, J. Garcıa, J. Miltat, Domain wall dynamics in nanowires. J. Magn. Magn. Mater. 242, 1061–1063 (2002)

    Article  Google Scholar 

  49. Y. Nakatani, A. Thiaville, J. Miltat, Faster magnetic walls in rough wires. Nat. Mater. 2, 521–523 (2003)

    Article  CAS  Google Scholar 

  50. E. Martinez, L. Lopez-Diaz, L. Torres, C. Tristan, O. Alejos, Thermal effects in domain wall motion: micromagnetic simulations and analytical model. Phys. Rev. B 75, 174409 (2007)

    Article  CAS  Google Scholar 

  51. T.H. Lahtinen, K.J. Franke, S. van Dijken, Electric-fieldcontrol of magnetic domain wall motion and local magnetization reversal. Sci. Rep. 2, 258 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yadagiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadagiri, K., Long, J., Wang, Y. et al. Magnetodynamic properties on square patterned of FeGaB and Al2O3/FeGaB thin films. J Mater Sci: Mater Electron 33, 15927–15935 (2022). https://doi.org/10.1007/s10854-022-08491-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08491-4

Navigation