Log in

Structural, optical and magnetic properties of Sr and Ni co-doped YFeO3 nanoparticles prepared by simple co-precipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 08 June 2022

This article has been updated

Abstract

YFeO3+δ, Y0.8Sr0.2FeO3+δ, YFe0.8Ni0.2O3+δ, and Y0.8Sr0.2Fe0.8Ni0.2O3+δ nanoparticles have been successfully synthesized by a simple co-precipitation technique. Results obtained using thermogravimetry and differential scanning calorimetry, powder X-ray diffraction, transmission electron microscopy indicate that YFeO3, Sr-doped YFeO3, Ni-doped YFeO3, and Sr and Ni co-doped YFeO3 nanoparticles with orthorhombic structure were fabricated at 800 °C for 1 h. The obtained materials have the crystallite sizes below 30 nm and particle sizes below 40 nm. Sr and/or Ni do** led to the distortion of the YFeO3 crystal structure and thus altered the magnetic properties of the corresponding materials. The Sr-doped YFeO3, Sr and Ni co-doped YFeO3, and especially Ni-doped YFeO3 samples have significantly higher absorbance in the visible light region (~ 400–800 nm) and lower band gap than those of pure YFeO3 sample. Magnetic hysteresis loop analyses illustrate that ferromagnetic behavior of the YFeO3 nanopowders can be strongly enhanced with the addition of Sr and/or Ni. The coercivity and remanent magnetization of Sr and Ni co-doped YFeO3+δ are, respectively, around 80 and 104 times higher than those of the pure YFeO3+δ sample. The excellent optical and magnetic properties of Sr and Ni co-doped YFeO3+δ nanomaterials suggest great potential for applications related to optics and magnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

References

  1. V.I. Popkov, O.V. Almjasheva, A.S. Semenova, D.G. Kellerman, Magnetic properties of YFeO3 nanocrystals obtained by different soft-chemical methods. J. Mater. Sci. 28, 7163–7170 (2017)

    CAS  Google Scholar 

  2. M. Wang, T. Wang, Sh. Song, M. Tan, Structure-controllable synthesis of multiferroic YFeO3 nanopowders and their optical and magnetic properties. Materials 10(6), 626 (2017)

    Article  Google Scholar 

  3. R. Maiti, S. Basu, D. Chakravorty, Synthesis of nanocrystalline YFeO3 and its magnetic properties. J. Magn. Magn. Mater. 321, 3274–3277 (2009)

    Article  CAS  Google Scholar 

  4. X. Lu, J. **e, H. Shu, J. Liu, Ch. Yin, J. Lin, Microwave-assisted synthesis of nanocrystalline YFeO3 and study of its photoactivity. Mater. Sci. Eng. B. 138, 289–292 (2007)

    Article  Google Scholar 

  5. M.I. Diez-Garcia, V. Celorrio, L. Calvillo, D. Tiwari, R. Gomez, D. Fermin, YFeO3 photocathodes for hydrogen evolution. Electrochim. Acta 246, 365–371 (2017)

    Article  CAS  Google Scholar 

  6. O. Rosales-Gonzalez, F.S.D. Jesus, F. Pedro-Garcia, C.A. Cortes-Escobedo, M. Ramirez-Cardona, A.M. Bolarin-Miro, Enhanced multiferroic properties of YFeO3 by do** with Bi3+. Materials 12, 2054 (2019)

    Article  CAS  Google Scholar 

  7. A.T. Nguyen, V.N.T. Pham, TTr.L. Nguyen, V.O. Mittova, Q.M. Vo, M.V. Berezhnaya, IYa. Mittova, T.H. Do, H.D. Chau, Crystal structure and magnetic properties of perovskite YFe1-xMnxO3 nanopowders synthesized by co-precipitation method. Solid State Sci. 96, 105922 (2019)

    Article  CAS  Google Scholar 

  8. A.T. Nguyen, H.D. Chau, Tr.L.T. Nguyen, V.O. Mittova, T.H. Do, IYa. Mittova, Structural and magnetic properties of YFe1-xCoxO3 (0.1 ≤ x ≤ 0.5) perovskite nanomaterials synthesized by co-precipitation method. Nanosyst. Phys. Chem. Math. 9(3), 424–429 (2018)

    Article  Google Scholar 

  9. N.O. Khalifa, H.M. Widatallah, A.M. Gismelseed, F.N. Al-Mabsali, R.G.S. Sofin, M. Pekala, Magnetic and Mössbauer studies of pure and Ti-doped YFeO3 nanocrystalline particles prepared by mechanical milling and subsequent sintering. Hyperfine Inter. 237, 46 (2016)

    Article  Google Scholar 

  10. M.V. Berezhnaya, O.V. Al’myasheva, V.O. Mittova, A.T. Nguyen, IYa. Mittova, Sol-gel synthesis and properties of Y1-xBaxFeO3 nanocrystals. Rus. J. Gen. Chem. 88(4), 626–631 (2018)

    Article  CAS  Google Scholar 

  11. H. Shen, J. Xu, M. **, G. Jiang, Influence of manganese on the structure and magnetic properties of YFeO3 nanocrystal. Ceram. Inter. 38, 1473–1477 (2012)

    Article  CAS  Google Scholar 

  12. P.S.J. Bharadwaj, S. Kundu, V.S. Kollipara, Structural, optical and magnetic properties of Sm3+ doped yttrium orthoferrite (YFeO3) obtained by sol-gel synthesis route. J. Phys. Condens. Matt. 32, 035810 (2020)

    Article  CAS  Google Scholar 

  13. C. Sasikala, N. Durairaj, I. Baskaran, B. Sathyaseelan, M. Henini, Transition metal titanium (Ti) doped LaFeO3 nanoparticles for enhanced optical structure and magnetic properties. J. All. Compd. 712, 870–877 (2017)

    Article  CAS  Google Scholar 

  14. T.A. Nguyen, V.N.T. Pham, H.T. Le, D.H. Chau, V.O. Mittova, L.TTr. Nguyen, D.A. Dinh, T.V.N. Hao, IYa. Mittova, Crystal structure and magnetic properties of LaFe1-xNixO3 nanomaterials prepared via a simple co-precipitation method. Ceram. Inter. 45, 21768–21772 (2019)

    Article  CAS  Google Scholar 

  15. C. Feng, S. Ruan, J. Li, B. Zou, J. Luo, W. Chen, W. Dong, F. Wu, Ethanol sensing properties of LaCoxFe1-xO3 nanoparticles: effects of calcination temperature, Co-do**, and carbon nanotube-treatment. Sens. Act. B 155(1), 232–238 (2011)

    Article  CAS  Google Scholar 

  16. N.A. Tien, I.Y. Mittova, D.O. Solodukhin, O.V. Al’myasheva, O.V. Mittova, SYu. Demidova, Sol–gel formation and properties of nanocrystals of solid solution Y1-xCaxFeO3. Rus. J. Inor. Chem. 59(2), 40–45 (2014)

    Article  Google Scholar 

  17. A. Somvanshi, Sh. Husain, W. Khan, Investigation of structure and physical properties of cobalt doped nano-crystalline neodymium orthoferrite. J. Alloys Compd. 778, 439 (2019)

    Article  CAS  Google Scholar 

  18. M.V. Knurova, I.Y. Mittova, N.S. Perov, O.V. Al’myasheva, N.A. Tien, V.O. Mittova, V.V. Bessalova, E.L. Viryutina, Effect of the degree of do** on the size and magnetic properties of nanocrystals La1-xZnxFeO3 synthesized by the sol–gel method. Rus. J. Inor. Chem. 62(3), 281–287 (2017)

    Article  CAS  Google Scholar 

  19. W. Haron, Th. Thaweechai, W. Wattanathana, A. Laobuthee, H. Manaspiya, Ch. Veranitisagul, N. Koonsaeng, Structure characteristics and dielectric properties of La1-xCoxFeO3 and LaFe1-xCoxO3 synthesized via metal organic complexes. Energy Proc. 34, 791–800 (2013)

    Article  CAS  Google Scholar 

  20. Z. Habib, K. Majid, M. Ikram, Kh. Sultan, Influence of Ni substitution at B-site for Fe3+ ions on morphological, optical, and magnetic properties of HoFeO3 ceramics. Appl. Phys. A 122, 550 (2016)

    Article  Google Scholar 

  21. A. Bashir, M. Ikram, R. Kumar, P.N. Lisboa-Filho, Structural, electronic structure and magnetic studies of GdFe1-xNixO3 (x ≤ 0.5). J. Alloys Compd. 521, 183–188 (2012)

    Article  CAS  Google Scholar 

  22. B.D. Cullity, C.D. Graham, Introduction to magnetic materials, 2nd edn. (Wiley, Canada, 2009)

    Google Scholar 

  23. N.A. Tien, V. Pham, D.H. Chau, V.O. Mittova, I.Y. Mittova, E.I. Kopeychenko, L.TTr. Nguyen, V.X. Bui, A.T.P. Nguyen, Effect of Ni substitution on phase transition crystal structure and magnetic properties of nanostructured YFeO3 perovskite. J. Mol. Struct. 1215, 128293 (2020)

    Article  Google Scholar 

  24. M. Johnsson, P. Lemmens, Crystallography and chemistry of perovskites, 1st edn. (Wiley, Hoboken, 2007)

    Google Scholar 

  25. C.E. Housecroft, A.G. Sharpe, Inorganic Chemistry, 2nd edn. (Prentice Hall, Pearson, 2005)

    Google Scholar 

  26. N. Imanaka, Physical and chemical properties of rare earth oxides, binary rare earth oxides (Kluwer Academic Publishers, Dordrecht, 2004), pp. 111–113

    Google Scholar 

  27. T.A. Nguyen, L.TTr. Nguyen, V.X. Bui, Influence of the synthitic conditions on the crystal structure, magnetic and optical properties of holmium orthoferrite nanoparticles. J. Mater. Sci. 32, 19010–19019 (2021)

    CAS  Google Scholar 

  28. M. Wang, T. Wang, Structural, magnetic and optical properties of Gd and Co co-doped YFeO3 nanopowders. Materials 12, 2423 (2019)

    Article  CAS  Google Scholar 

  29. N. Ghobadi, Band gap determination using absorption spectrum fitting procedure. Inter. Nano Lett. (2013). https://doi.org/10.1186/2228-5326-3-2

    Article  Google Scholar 

  30. A.G. Belous, E.V. Pashkova, V.A. Elshanskii, V.P. Ivanitskii, Effect of precipitation conditions on the phase composition, particle morphology, and properties of iron (III, II) hydroxide precipitates. Inor. Mater. 36, 343–351 (2000)

    Article  CAS  Google Scholar 

  31. P. Caro, M. Lemaitre, M. Blassé, C.R. Reances, Hydroxycarbonates deterres rates Ln2(CO3)x(OH)2(3–x).nH2O. Acad. Sci. Ser. C 269, 687–690 (1969)

    CAS  Google Scholar 

  32. T.A. Nguyen, V. Pham, T.L. Pham, L.TTr. Nguyen, I.Y. Mittova, V.O. Mittova, L.N. Vo, B.T.T. Nguyen, V.X. Bui, E.L. Viryutina, Simple synthesis of NdFeO3 by the so-precipitation method based on a study of thermal behaviors of Fe (III) and Nd (III) hydroxides. Curr. Comput.-Aided Drug Des. 10, 219 (2020)

    CAS  Google Scholar 

  33. W. Shi**, Zh. Shengliang, W. Zubiao, W. Yuling, W. Shang**, Ch. Jianjun, X. Rong, L. Longfei, Synthesis and characterization of yttrium hydroxide and oxide microtubes. Rare Met. 28(5), 445–448 (2009)

    Article  Google Scholar 

  34. V.V. Kharton, A.V. Kovalevsky, M.V. Patrakeev, E.V. Tsipis, A.P. Viskup, V.A. Kolotygin, A.A. Yaremchenko, A.L. Shaula, E.A. Kiselev, J.C. Waerenborg, Oxygen nonstoichiometry, mixed conductivity, and Mössbauer spectra of Ln0.5A0.5FeO3-δ (Ln = La – Sm, A = Sr, Ba): effect of cation size. Chem. Mater. 20, 6457–6467 (2008)

    Article  CAS  Google Scholar 

  35. H.W. Brinks, H. Fjellvag, A. Kjekshus, B.C. Hauback, Structure and magnetism of Pr1-xSrxFeO3-δ. J. Solid State Chem. 150(2), 233–249 (2000)

    Article  CAS  Google Scholar 

  36. J.W. Fergus, Perovskite oxides for semiconductor-based gas sensors. Sensors Actuators B 123, 1169–1179 (2007)

    Article  CAS  Google Scholar 

  37. C.V. Ramana, R.J. Smith, O.M. Hussain, Grain size effects on the optical characteristics of pulsed-laser deposited vanadium oxide thin films. Phys. Status Solidi A (2003). https://doi.org/10.1002/pssa.200309009

    Article  Google Scholar 

  38. A.J. Deotale, R.V. Nandedkar, Correlation between particle size, strain and band gap of iron oxide nanoparticles. Mater. Today 3(6), 2069–2076 (2016)

    Google Scholar 

  39. T. Moriya, New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228–230 (1960)

    Article  CAS  Google Scholar 

  40. I. Dzyaloshinsky, A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4(4), 241–255 (1958)

    Article  CAS  Google Scholar 

  41. A. Jaiswal, R. Das, S. Adyanthaya, P. Poddar, Surface effects on morin transition, exchange bias, and enchanced spin reorientation in chemically synthesized DyFeO3 nanoparticles. J. Phys. Chem. C 115(7), 2954–2960 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ho Chi Minh City University of Education for the facility support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, and formal analysis: DHTP, LTTN and TAN, validation: TAN and DHC, writing—original draft preparation: TAN, DHC, VXB, writing—review and editing, VOM and IYM. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Vuong X. Bui.

Ethics declarations

Conflict of interest

The authors maintain that they have no conflict of interest to be described in this communication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to affiliation error.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, D.H.T., Nguyen, L.T.T., Mittova, V.O. et al. Structural, optical and magnetic properties of Sr and Ni co-doped YFeO3 nanoparticles prepared by simple co-precipitation method. J Mater Sci: Mater Electron 33, 14356–14367 (2022). https://doi.org/10.1007/s10854-022-08360-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08360-0

Navigation