Log in

Highly sensitive and selective room temperature ammonia sensor based on polyaniline thin film: in situ dip-coating polymerization

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polyaniline (PAni) thin film has been synthesized using chemical oxidation route to be used as highly sensitive and selective ammonia (NH3) sensors. In situ dip-coating chemical polymerization method has been used to grow PAni thin films on glass substrates. The morphological and structural properties of deposited thin film have been examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and Fourier-transform infrared (FTIR) spectroscopy techniques. Raman and FTIR analysis confirm the successful growth of PAni with long-chain conjugation, whereas SEM micrograph reveals the growth of nanofibrous structured polyaniline. An amorphous structure of the prepared polyaniline with perpendicular periodicity of the conjugated polymer chains has been observed through XRD analysis. The ammonia gas sensing properties, in terms of change in electrical resistance, of the prepared thin film sensor have been investigated at room temperature for different concentrations (25–150 ppm) of ammonia. The deposited film has sensitivity as high as 245% and selectivity (%) of ~ 67% towards ammonia gas (at 150 ppm). The gas sensing response of the deposited film is found to be increased with increasing concentration of ammonia and the observed behaviour is well corroborated with modified Freundlich’s sensitivity versus chemical concentration relation. The effect of humidity on the sensing response and other parameters associated with the figure of merits of sensor like response time, recovery time, selectivity, stability etc. have also been studied. The compensation of charge carriers, i.e. polarons and bipolarons, under the electron donating ammonia gas is considered to be the mechanism of gas sensing for the deposited PAni film. The synthesized PAni thin film sensor with low cost, high sensitivity, selectivity and durability can be utilized for the development of industrial ammonia sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors state that the datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. G.K. Mani, J.B.B. Rayappan, A highly selective room temperature ammonia sensor using spray deposited zinc oxide thin films. Sens. Actuators B: Chem. 178, 485–493 (2013)

    Article  CAS  Google Scholar 

  2. B. Timmer, W. Olthuis, A. Berg, Ammonia sensors and their applications—a review. Sens. Actuators B: Chem. 107, 666–677 (2005)

    Article  CAS  Google Scholar 

  3. Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuators B: Chem. 178, 485–493 (2013)

    Article  CAS  Google Scholar 

  4. H.J. **a, Y. Wang, F.H. Kong, S.R. Wang, B.L. Zhu, X.Z. Guo, J. Zhang, Y.M. Wang, S.H. Wu, Au-doped WO3 based sensor for NO2 detection at low operating temperature. Sens. Actuators B 134, 133 (2008)

    Article  CAS  Google Scholar 

  5. Y.H. Navale, S.T. Navale, N.S. Ramgir, F.J. Stadler, S.K. Gupta, D.K. Aswal, V.B. Patil, Zinc oxide hierarchical nanostructures as potential NO2 sensors. Sens. Actuators B 251, 551 (2017)

    Article  CAS  Google Scholar 

  6. Y.H. Navale, S.T. Navale, F.J. Stadler, N.S. Ramgir, A.K. Debnath, S.C. Gadkari, S.K. Gupta, D.K. Aswal, V.B. Patil, Thermally evaporated copper oxide films: a view of annealing effect on physical and gas sensing properties. Ceram. Int. 43, 7057 (2017)

    Article  CAS  Google Scholar 

  7. A.M. Abd-Elnaiem, M.A. Abdel-Rahim, A.Y. Abdel-Latief, A.A. Mohamed, K. Mojsilović, W.J. Stępniowski, Fabrication, characterization and photocatalytic activity of copper oxide nanowires formed by anodization of copper foams. Materials 14(17), 5030 (2021)

    Article  CAS  Google Scholar 

  8. G. Sberveglieri, L. Depero, S. Groppelli et al., WO3 sputtered thin films for NOx monitoring. Sens. Actuators B 26(1–3), 89–92 (1995)

    Article  CAS  Google Scholar 

  9. A. Verma, P. Chaudhary, R.K. Tripathi, B.C. Yadav, The functionalization of polyacrylamide with MoS2 nanoflakes for use in transient photodetectors. Sustain. Energy Fuels 5(5), 1394–1405 (2021)

    Article  CAS  Google Scholar 

  10. P. Chaudhary, D.K. Maurya, R.K. Tripathi, B.C. Yadav, N.D. Golubeva, E.I. Knerelman, I.E. Ufly, G.I. Dzhardimalieva, The synthesis of a Cu0.8Zn0.2Sb2–polyacrylamide nanocomposite by frontal polymerization for moisture and photodetection performance. Mater. Adv. 1, 2804–2817 (2020)

    Article  CAS  Google Scholar 

  11. I. Rawal, N. Dwivedi, R.K. Tripathi, O.S. Panwar, H.K. Malik, Organic-inorganic hybrid nanomaterials for advanced light dependent resistors. Mater. Chem. Phys. 202, 169–176 (2017)

    Article  CAS  Google Scholar 

  12. R.K. Tripathi, O.S. Panwar, A.K. Srivastava, I. Rawal, S. Chockalingam, Structural, nanomechanical, field emission and ammonia gas sensing properties of nitrogenated amorphous carbon films deposited by filtered anodic jet carbon arc technique. Talanta 125, 276–283 (2014)

    Article  CAS  Google Scholar 

  13. I. Rawal, L. Kumar, R.K. Tripathi, O.S. Panwar, Surface structure-dependent low turn-on electron field emission from polypyrrole/tin oxide hybrid cathodes. ACS Omega 2(11), 7515–7524 (2017)

    Article  CAS  Google Scholar 

  14. A. Ishpal, Kaur, Spectroscopic and electrical sensing mechanism in oxidant-mediated polypyrrole nanofibers/nanoparticles for ammonia gas. J. Nanopart. Res. 15, 1637 (2013)

    Article  Google Scholar 

  15. A. Ishpal Rawal, Kaur, Synthesis of mesoporous polypyrrole nanowires/nanoparticles for ammonia gas sensing application. Sens. Actuators A 203, 92–102 (2013)

    Article  CAS  Google Scholar 

  16. R. Pal, S.L. Goyal, I. Rawal, High-performance solid state supercapacitors based on intrinsically conducting polyaniline/MWCNTs composite electrodes. J. Polym. Res. 27, 179 (2020)

    Article  CAS  Google Scholar 

  17. A.R. Blythe, Electrical Properties of Polymers (Cambridge University Press, Cambridge, 1979)

    Google Scholar 

  18. X. Lu, W. Zhang, C. Wang, T.C. Wen, Y. Wei, One dimensional conducting polymer nanocomposites: synthesis, properties and applications. Prog. Polym. Sci. 36, 671–712 (2011)

    Article  CAS  Google Scholar 

  19. S.T. Navale, A.T. Mane, G.D. Khuspe, M.A. Chougule, V.B. Patil, Highly selective and sensitive room temperature NO2 gas sensor based on polypyrrole thin films. Synth. Met. 195, 228 (2014)

    Article  CAS  Google Scholar 

  20. L. Geng, Y. Zhao, X. Huang, S. Wang, S. Zhang, S. Wu, Characterization and gas sensitivity study of polyaniline/SnO2 hybrid material prepared by hydrothermal route. Sens. Actuators B 120, 568 (2007)

    Article  CAS  Google Scholar 

  21. H. Bai, G. Shi, Gas sensors based on conducting polymer. Sensors 7(3), 267–307 (2007)

    Article  CAS  Google Scholar 

  22. M. Amrithesh, S. Aravind, S. Jayalekshmi, R.S. Jayasree, Enhanced photoluminescence in PMMA-polyaniline blends. J. Alloys Compd. 449, 176 (2008)

    Article  CAS  Google Scholar 

  23. S. Roth, Conducting polymer-physical concepts and practical applications. Ind. J. Chem. A 33A(06), 453–460 (1994)

    CAS  Google Scholar 

  24. Mihai Irimia-Vladu, J.W. Fergus, Suitability of emeraldine base polyaniline-PVA composite film for carbon dioxide sensing. Synth. Met. 156, 1401–1407 (2006)

    Article  CAS  Google Scholar 

  25. E.M. Genies, A. Boyle, M. Lapkowski, C. Tsintavis, Polyaniline: a historical survey. Synth. Met. 36, 139 (1990)

    Article  CAS  Google Scholar 

  26. L. kumar, I. Rawal, A. Kaur, S. Annapoorni, Flexible room temperature ammonia sensor based on polyaniline. Sens. Actuators B 240, 408–416 (2017)

    Article  CAS  Google Scholar 

  27. I. Fratodi, I. Venditti, C. Cametti, M.V. Russo, Chemiresistive polyaniline-based gas sensors: a mini review. Sens. Actuators B: Chem. 220, 534–548 (2015)

    Article  CAS  Google Scholar 

  28. H. Yan, M. Zhong, Z. Lv, P. Wan, Stretchable electronic sensors of nanocomposites network films for ultrasensitive chemical vapour sensing. Small 13, 1–8 (2017)

    Google Scholar 

  29. P. Wan, X. Wen, C. Sun, B. Chandran, H. Zhang, X. Sun, Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing. Small 11, 5409–5415 (2015)

    Article  CAS  Google Scholar 

  30. H. Tai, Y. jiang, G. **e, J. Yu, X. Chen, Fabrication and gas sensitivity of Polyaniline/TiO2 thin film. Sens. Actuators B 125, 644 (2007)

    Article  CAS  Google Scholar 

  31. A.L. Kukla, Yu.M. Shirshov, S.A. Piletsky, Ammonia sensors based on sensitive polyaniline films. Sens. Actuators B 37, 135–140 (1996)

    Article  CAS  Google Scholar 

  32. S. Virji, J. Huang, R.B. Kaner, B.H. Weille, Polyaniline nanofiber gas sensors: examination of response mechanisms. Nano Lett. 4(3), 491–496 (2004)

    Article  CAS  Google Scholar 

  33. G.D. Khuspe, D.K. Bandgar, V.B. ShashwatiSen, Patil, Fussy nanofibrous network of polyaniline (PANi) for ammonia detection. Synth. Met. 162, 1822–1827 (2012)

    Article  CAS  Google Scholar 

  34. R. Kumar, B.C. Yadav, Humidity sensing investigation on nanostructured polyaniline synthesized via chemical polymerization method. Mater. Lett. 167, 300–302 (2016)

    Article  CAS  Google Scholar 

  35. R. Pal, S.L. Goyal, I. Rawal, S. Sharma, Efficient room temperature methanol sensors based on polyaniline/graphene micro/nanocomposites. Iran. Polym. J. 29, 591–603 (2020)

    Article  CAS  Google Scholar 

  36. G.D. Khuspe, S.T. Navale, D.K. Bandgar, R.D. Sakhare, M.A. Chougule, V.B. Patil, SnO2 nanoparticles-modified polyaniline films as highly selective, sensitive, reproducible and stable ammonia sensors. Electron. Mater. Lett. 10(1), 191–197 (2014)

    Article  CAS  Google Scholar 

  37. H.C. Pant, M.K. Patra, S.C. Negi, A. Bhatia, S.R. Vadera, N. Kumar, Studies on conductivity and dielectric properties of polyaniline-zinc sulphide composites. Bull. Mater. Sci. 29, 379–384 (2006)

    Article  CAS  Google Scholar 

  38. K.R. Reddy, B.C. Sin, K.S. Ryu, J. Noh, Y. Lee, In situ self-organization of carbon black-polyaniline composites from nanospheres to nanorods: synthesis, morphology, structure and electrical conductivity. Synth. Met. 159, 1934–1939 (2009)

    Article  CAS  Google Scholar 

  39. A. Saaedi, P. Shabani, R. Yousefi, High performance of methanol gas sensing of ZnO/polyaniline nanocomposites synthesized under different magnetic field. J. Alloys Compd. 802, 335–344 (2019)

    Article  CAS  Google Scholar 

  40. A.M. Aboelkheira, A.M. Abdelghanyb, D.M. Ayaada, M.Y.A. Abdelaa, Synthesis and characterization of the thin films containing polyaniline—carboxymethyl cellulose composites. Egypt. J. Chem. 65(1), 335–340 (2022)

    Google Scholar 

  41. A. Meroufel, C. Deslouis, S. Touzain, Electrochemical and anticorrosion performances of zinc-rich and polyaniline powder coatings. Electrochim. Acta 53, 2331–2338 (2008)

    Article  CAS  Google Scholar 

  42. K.A. Ibrahim, Synthesis and characterization of polyaniline and poly(aniline-co-o-nitroaniline) using vibrational spectroscopy. Arab. J. Chem. 10(2), S2668–S2674 (2017)

    Article  CAS  Google Scholar 

  43. S. Bai, Y. Tian, M. Cui, J. Sun, Y. Tian, R. Luo, A. Chen, Li D, Polyaniline @SnO2 heterojunction loading on flexible PET thin film for detection of AMMONIA at room temperature. Sens. Actuators 226, 540–554 (2016)

    Article  CAS  Google Scholar 

  44. V. Talwar, O. Singh, R.C. Singh, ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor. Sens. Actuators B 191, 276–282 (2014)

    Article  CAS  Google Scholar 

  45. H. Liu, X.B. Hu, J.Y. Wang, R.I. Boughton, Structure, Conductivity, and thermopower of crystalline polyaniline synthesized by the ultrasonic irradiation polymerization method. Macromolecules 35(25), 9414–9419 (2002)

    Article  CAS  Google Scholar 

  46. M. Jain, S. Annapoorni, Raman study of polyaniline nanofibers prepared by interfacial polymerization. Synth. Met. 160, 1727–1732 (2010)

    Article  CAS  Google Scholar 

  47. L. Dauginet-De Pra, S. Demoustier-Champagne, A conducting polymer with enhanced electronic stability applied in cardiac models. Thin Solid Films 479, 321 (2005)

    Article  CAS  Google Scholar 

  48. J. Watsont, K. Ihokura, G.S.V. Colest, The tin dioxide gas sensor. Meas. Sci. Technol. 4, 711–719 (1993)

    Article  Google Scholar 

  49. M. Gautam, A.H. Jayatissa, Adsorption kinetics of ammonia sensing by graphene films decorated with platinum nanoparticles. J. Appl. Phys. 111, 094317 (2012)

    Article  CAS  Google Scholar 

  50. H. Hu, M. Trejo, M.E. Nicho, J.M. Saniger, A. Gracia-Valen, Zuela, Adsorption kinetics of optochemical NH3 gas sensing with semiconductor polyaniline films. Sens. Actuators B 82, 14–23 (2002)

    Article  CAS  Google Scholar 

  51. J.L. Johnson, A. Behnam, Y. An, S.J. Pearton, A. Yral, Experimental study of graphitic nanoribbon films for ammonia sensing. J. Appl. Phys. 109, 124301 (2011)

    Article  CAS  Google Scholar 

  52. J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan, Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 3, 929–933 (2003)

    Article  CAS  Google Scholar 

  53. M.A. Basyooni, M. Shaban, A.M. Sayed, Enhanced gas sensing properties of spin-coated Na-incorporated ZnO nanostructured films. Sci. Rep. 7, 41716 (2017). https://doi.org/10.1038/srep41716

    Article  CAS  Google Scholar 

  54. Y.G. Abou El-Reash, A.M. Abdelghany, A. Abd Elrazak, Removal and separation of Cu(II) from aqueous solutions using nano-silver chitosan/polyacrylamide membranes. Int. J. Biol. Macromol. 86, 789–798 (2016)

    Article  CAS  Google Scholar 

  55. G. Yasmeen, A.M. Abou El-Reash, Abdelghany, K. Leopold, Solid-phase extraction of Cu2+ and Pb2+ from waters using new thermally treated chitosan/polyacrylamide thin films; adsorption kinetics and thermodynamics. Int. J. Environ. Anal. Chem. 97(10), 965–982 (2017)

    Article  CAS  Google Scholar 

  56. V. Kumar, I. Rawal, V. Kumar, Fabrication of n-ZnO/p-Si++ hetero-junction devices for hydrogen detection: effect of annealing temperature. Silicon (2021). https://doi.org/10.1007/s12633-021-01508-3

    Article  Google Scholar 

  57. D. Djurado, B. Gilles, P. Rannou, J.P. Travers, Structural investigation of the effect of aging on conducting polyanilines. Synth. Met. 101(1–3), 803–804 (1999)

    Article  CAS  Google Scholar 

  58. S.B. Kulkarni, Y.H. Navale, S.T. Navale, F.J. Stadler, N.S. Ramgir, V.B. Patil, Hybrid polyaniline-WO3 flexible sensor: a room temperature competence towards NH3 gas. Sens. Actuators B 288, 279–288 (2019)

    Article  CAS  Google Scholar 

  59. Z.F. Li, F.D. Blum, M.F. Bertino, C.S. Kim, S.K. Pillalamarri, One-step fabrication of a polyaniline nanofiber vapor sensor. Sens. Actuators B 134, 31–35 (2008)

    Article  CAS  Google Scholar 

  60. R. Arora, A. Srivastav, U.K. Mandal, Polyaniline based polymeric nanocomposite containing TiO2 and SnO2 for environmental and energy applications. Int. J. Modern Eng. Res. 2(4), 2384–2395 (2012)

    Google Scholar 

  61. A.L. Kukla, Y.M. Shirshov, S.A. Piletsky, Ammonia sensors based on sensitive polyaniline films. Sens. Actuators B: Chem. 37, 135–140 (1996)

    Article  CAS  Google Scholar 

  62. A. Ishpal, Kaur, Spectroscopic investigations of ammonia gas sensing mechanism in polypyrrole nanotubes/nanorods. J. Appl. Phys. 113, 094504 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

PK Goyal is thankful to J C Bose University of Science & Technology YMCA, Faridabad, for financial help in form of seed grant to carry out this work. One of the authors AS is thankful to the University for Ph.D. Research Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

AS contributed to conceptualization, methodology, investigation, data analysis, writing—original draft, visualization. IR contributed to methodology, investigation, data analysis and manuscript writing and editing. AR contributed to methodology, investigation, formal analysis, visualization, writing and editing. AK contributed to conceptualization, investigation and formal analysis. VK contributed to conceptualization, methodology, investigation and formal analysis. PKG contributed to conceptualization, investigation, formal analysis, visualization, writing—original draft, editing and supervision.

Corresponding author

Correspondence to Parveen K. Goyal.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial non-financial interests to disclose or no personal relationships that could have appeared to influence the work reported in this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Rawal, I., Rajpal, A. et al. Highly sensitive and selective room temperature ammonia sensor based on polyaniline thin film: in situ dip-coating polymerization. J Mater Sci: Mater Electron 33, 14071–14085 (2022). https://doi.org/10.1007/s10854-022-08338-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08338-y

Navigation