Log in

Manufacturing and characterization of Sn–Cu/SiO2np lead-free nanocomposite solder by accumulative roll bonding (ARB) process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, lead-free Sn-0.7 wt% Cu and Sn-0.7 wt% Cu/1 wt% SiO2np nanocomposite solders were manufactured using vacuum melting and accumulative roll bonding (ARB) processes. Microstructural investigations and differential scanning calorimetry showed successful vacuum melting and alloying of the solder. The results showed that performing six ARB passes with 75% reduction per pass, without any lubrication or surface preparation procedures, resulted in a relatively uniform distribution of the nanoparticles in the matrix. Optimum nanocomposite solder revealed a 30% and 70% increase in microhardness and tensile strength compared to the monolithic sample, respectively. The shear strength of the optimum nanocomposite solder after reflow was about 20% higher than the monolithic solder. Also, there was no significant change in the wetting angle of the optimum nanocomposite solder with a copper substrate compared with the monolithic sample. The electrical resistivity measurements showed that the optimal nanocomposite solder has the desired performance during application. The results approve the applicability of the studied Sn–Cu–SiO2np nanocomposite and ARB process for the economical production of a reliable lead-free solder in the electronics industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

There is no shareable data associated with this paper.

References

  1. P.T. Vianco, D.R. Frear, Issues in the replacement of lead-bearing solder. JOM 45(7), 14–19 (1993)

    Article  CAS  Google Scholar 

  2. M.A.A. Mohd Salleh, S.D. McDonald, C.M. Gourlay, S.A. Belyakov, H. Yasuda, K. Nogita, Effect of Ni on the formation and growth of primary Cu6Sn5 intermetallics in Sn-0.7 wt.% Cu solder pastes on Cu substrates during the soldering process. J. Electron. Mater. 45, 154–163 (2015)

    Article  Google Scholar 

  3. J.W. Yoon, S.W. Kim, S.B. Jung, Interfacial reaction and mechanical properties of eutectic Sn–0.7Cu/Ni BGA solder joints during isothermal long-term aging. J. Alloys Compd. 391, 82–89 (2005)

    Article  CAS  Google Scholar 

  4. M.M. Salleh, A.M. Al Bakri, M.H. Zan, F. Somidin, N.F.M. Alui, Z.A. Ahmad, Mechanical properties of Sn–0.7 Cu/Si3N4 lead-free composite solder. Mater. Sci. Eng. A 556, 633–637 (2012)

    Article  Google Scholar 

  5. F. Wang, X. Ma, Y. Qian, Improvement of microstructure and interface structure of eutectic Sn–0.7Cu solder with small amount of Zn addition. Scripta Mater. 53, 699–702 (2005)

    Article  CAS  Google Scholar 

  6. M.A.A. Mohd Salleh, S.D. McDonald, K. Nogita, Effects of Ni and TiO2 additions in as-reflowed and annealed Sn0.7Cu solders on Cu substrates. J. Mater. Process. Technol. 242, 235–245 (2017)

    Article  CAS  Google Scholar 

  7. A.A. El-Daly, A.E. Hammad, Development of high strength Sn–0.7Cu solders with the addition of small amount of Ag and In. J. Alloys Compd. 509, 8554–8560 (2011)

    Article  CAS  Google Scholar 

  8. X.L. Zhong, M. Gupta, Development of lead-free Sn-0.7Cu/Al2O3 nanocomposite solders with superior strength. J Phys D (2008). https://doi.org/10.1088/0022-3727/41/9/095403

    Article  Google Scholar 

  9. Q.S. Zhu, Z.G. Wang, S.D. Wu, J.K. Shang, Enhanced rate-dependent tensile deformation in equal channel angularly pressed Sn–Ag–Cu alloy. Mater. Sci. Eng. A 502, 153–158 (2009)

    Article  Google Scholar 

  10. A.K. Gain, Y.C. Chan, Growth mechanism of intermetallic compounds and dam** properties of Sn–Ag–Cu–1wt% nano-ZrO2 composite solders. Microelectron. Reliab. 54, 945–955 (2014)

    Article  CAS  Google Scholar 

  11. S. Chellvarajoo, M.Z. Abdullah, Z. Samsudin, Effects of Fe2NiO4 nanoparticles addition into lead free Sn–3.0Ag–0.5Cu solder pastes on microstructure and mechanical properties after reflow soldering process. Mater. Design 67, 197–208 (2014)

    Article  Google Scholar 

  12. Y. Tang, S.M. Luo, Z.H. Li, C.J. Hou, G.Y. Li, Morphological evolution and growth kinetics of interfacial Cu6Sn5 and Cu3Sn layers in low-Ag Sn–0.3Ag–0.7Cu-xMn/Cu solder joints during isothermal ageing. J. Electron. Mater. (2018). https://doi.org/10.1007/s11664-018-6481-5

    Article  Google Scholar 

  13. P. Babaghorbani, S.M.L. Nai, M. Gupta, Development of lead-free Sn–3.5Ag/SnO2 nanocomposite solders. J. Mater. Sci. 20, 571–576 (2009)

    CAS  Google Scholar 

  14. Q.K. Zhang, Z.F. Zhang, Thermal fatigue behaviors of Sn–4Ag/Cu solder joints at low strain amplitude. Mater. Sci. Eng. A 580, 374–384 (2013)

    Article  CAS  Google Scholar 

  15. H.L. Lai, J.G. Duh, Lead-free Sn–Ag and Sn–Ag–Bi solder powders prepared by mechanical alloying. J. Electron. Mater. 32, 215–220 (2003)

    Article  CAS  Google Scholar 

  16. X.L. Zhong, M. Gupta, Effect of type of reinforcement at nanolength scale on the tensile properties of Sn–0.7Cu solder alloy. Electron. Packaging Technol. Conf. (2008). https://doi.org/10.1109/EPTC.2008.4763510

    Article  Google Scholar 

  17. H.R. Kotadia, P.D. Howes, S.H. Mannan, A review: on the development of low melting temperature Pb-free solders. Microelectron. Reliab. 54, 1253–1273 (2014)

    Article  CAS  Google Scholar 

  18. L. Zhang, K.N. Tu, Structure and properties of lead-free solders bearing micro and nano particles. Mater. Sci. Eng. R 82, 1–32 (2014)

    Article  Google Scholar 

  19. E.E.M. Noor, A. Singh, Y.T. Chuan, A review: influence of nano particles reinforced on solder alloy. Solder Surf Mount Technol 25, 229–241 (2013)

    Article  CAS  Google Scholar 

  20. L.C. Tsao, C.H. Huang, C.H. Chung, R.S. Chen, Influence of TiO2 nanoparticles addition on the microstructural and mechanical properties of Sn0.7Cu nano-composite solder. Mater. Sci. Eng. A 545, 194–200 (2012)

    Article  CAS  Google Scholar 

  21. W. Yang, Y. Lv, X. Zhang, X. Wei, Y. Li, Y. Zhan, Influence of graphene nanosheets addition on the microstructure, wettability, and mechanical properties of Sn–0.7Cu solder alloy. J. Mater. Sci. 31, 14035–14046 (2020)

    CAS  Google Scholar 

  22. Z. Fathian, A. Maleki, B. Niroumand, Synthesis and characterization of ceramic nanoparticles reinforced lead-free solder. Ceram. Int. 43, 5302–5310 (2017)

    Article  CAS  Google Scholar 

  23. A. Roshanghias, A.H. Kokabi, Y. Miyashita, Y. Mutoh, M. Rezayat, H.R. Madaah-Hosseini, Ceria reinforced nanocomposite solder foils fabricated by accumulative roll bonding process. J. Mater. Sci. 23, 1698–1704 (2012)

    CAS  Google Scholar 

  24. A. Roshanghias, A.H. Kokabi, Y. Miyashita, Y. Mutoh, M. Hosseini, Formation of intermetallic reaction layer and joining strength in nano-composite solder joint. J. Mater. Sci. 24, 839–847 (2013)

    CAS  Google Scholar 

  25. M. Senemar, A. Maleki, B. Niroumand, A. Allafchian, A novel and facile method for silica nanoparticles. Metall. Mater. Eng. 22, 1–8 (2016)

    Article  CAS  Google Scholar 

  26. Standard, A. S. T. M. Standard test method for Knoop and Vickers hardness of materials. ASTM International (2011)

  27. American Society for Testing and Materials. Standard test methods for tension testing of metallic materials. ASTM International (2009)

  28. F. Khodabakhshi, R. Sayyadi, N.S. Javid, Lead free Sn–Ag–Cu solders reinforced by Ni-coated graphene nanosheets prepared by mechanical alloying: microstructural evolution and mechanical durability. Mater. Sci. Eng. A 702, 371–385 (2017)

    Article  CAS  Google Scholar 

  29. L. Wang, D. Q. Yu, S. Q. Han, H. T. Ma, and H. P. **e, The evaluation of the new composite lead free solders with the novel fabricating process. In Proceedings of 2004 International Conference on the Business of Electronic Product Reliability and Liability (IEEE Cat. No. 04EX809), pp. 50–56. IEEE (2004)

  30. F. Guo, J.G. Lee, T. Hogan, K.N. Subramanian, Electrical conductivity changes in bulk Sn, and eutectic Sn–Ag in bulk and in joints, from aging and thermal shock. J. Mater. Res. 20, 364–374 (2005)

    Article  CAS  Google Scholar 

  31. K.D. Kim, D.D.L. Chung, Effect of heating on the electrical resistivity of conductive adhesive and soldered joints. J. Electron. Mater. 31, 933–939 (2002)

    Article  CAS  Google Scholar 

  32. S.M.L. Nai, J. Wei, M. Gupta, Effect of carbon nanotubes on the shear strength and electrical resistivity of a lead-free solder. J. Electron. Mater. 37, 515–522 (2008)

    Article  CAS  Google Scholar 

  33. P. Babaghorbani, S.M.L. Nai, M. Gupta, Reinforcements at nanometer length scale and the electrical resistivity of lead-free solders. J. Alloys Compd. 478, 458–461 (2009)

    Article  CAS  Google Scholar 

  34. M.I.I. Ramli, M.A.A. Mohd Salleh, H. Yasuda, J. Chaiprapa, K. Nogita, The effect of Bi on the microstructure, electrical, wettability and mechanical properties of Sn–0.7Cu–0.05Ni alloys for high strength soldering. Mater. Des. 186, 108281 (2020)

    Article  CAS  Google Scholar 

  35. J. Son, D.Y. Yu, M.S. Kim, Y.H. Ko, D.J. Byun, J. Bang, Nucleation and morphology of Cu6Sn5 intermetallic at the interface between molten Sn–0.7Cu–0.2Cr solder and Cu substrate. Metals 11, 1–12 (2021)

    Google Scholar 

  36. A. Mashhadi, A. Atrian, L. Ghalandari, Mechanical and microstructural investigation of Zn/Sn multilayered composites fabricated by accumulative roll bonding (ARB) process. J. Alloys Compd. 727, 1314–1323 (2017)

    Article  CAS  Google Scholar 

  37. R. Jamaati, M.R. Toroghinejad, Application of ARB process for manufacturing high-strength, finely dispersed and highly uniform Cu/Al2O3 composite. Mater. Sci. Eng. A 527, 7430–7435 (2010)

    Article  Google Scholar 

  38. H. Ma, J.C. Suhling, A review of mechanical properties of lead-free solders for electronic packaging. J. Mater. Sci. 44, 1141–1158 (2009)

    Article  CAS  Google Scholar 

  39. E.S. Freitas, W.R. Osório, J.E. Spinelli, A. Garcia, Mechanical and corrosion resistances of a Sn-0.7 wt.% Cu lead-free solder alloy. Microelectron. Reliab. 54, 1392–1400 (2014)

    Article  CAS  Google Scholar 

  40. P. Yao, X. Li, Investigation on shear fracture of different strain rates for Cu/Cu3Sn/Cu solder joints derived from Cu–15µm Sn–Cu sandwich structure. J. Mater. Sci. 31, 2862–2876 (2020)

    CAS  Google Scholar 

  41. R. Goodall, L. Weber, A. Mortensen, The electrical conductivity of microcellular metals. J. Appl. Phys. (2006). https://doi.org/10.1063/1.2335672

    Article  Google Scholar 

  42. S.Y. Chang, C.F. Chen, S.J. Lin, T.Z. Kattamis, Electrical resistivity of metal matrix composites. Acta Materialia 51, 6291–6302 (2003)

    Article  CAS  Google Scholar 

  43. K. Murase, K.L. Morrison, P.Y. Tam, R.L. Stafford, F. Jurnak, G.A. Weiss, EF-Tu binding peptides identified, dissected, and affinity optimized by phage display. Chem. Biol. 10, 161–168 (2003)

    Article  CAS  Google Scholar 

  44. M. Gupta, G. Karunasiri, M.O. Lai, Effect of presence and type of particulate reinforcement on the electrical conductivity of non-heat treatable aluminum. Mater. Sci. Eng. A 219, 133–141 (1996)

    Article  Google Scholar 

  45. N. Zamani Bakhtiarvand, A. Taherizadeh, A. Maleki, M.A. Karimi, Manufacturing and characterization of Sn-0.6Al lead-free composite solder using accumulative extrusion process. J. Electron. Mater. 50, 6372–6385 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been supported by Iran National Science Foundation (INSF) and conducted at the Isfahan University of Technology.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MH performed the experiments and prepared the paper draft. HKI assisted in analysis of the results. BN and AM supervised the research and corrected the draft as the final version.

Corresponding author

Correspondence to Ali Maleki.

Ethics declarations

Conflict of interest

The author declared that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, M., Niroumand, B., Maleki, A. et al. Manufacturing and characterization of Sn–Cu/SiO2np lead-free nanocomposite solder by accumulative roll bonding (ARB) process. J Mater Sci: Mater Electron 33, 13516–13530 (2022). https://doi.org/10.1007/s10854-022-08286-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08286-7

Navigation