Log in

Compressible and sensitive aerogels derived from graphene/waste paper for wearable pressure sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Biomass-derived 3D and porous conductive aerogels have been considered as potential environmentally friendly material for wearable pressure sensors. However, the development of a simple strategy for the fabrication of biomass-derived aerogels with the properties of wide-sensing range, high sensitivity, and low detection is still significantly challenging. Here, graphene was incorporated into waste paper to prepare graphene-coated waste paper aerogel (GWA) using a simple “filtration-oven drying” method under atmospheric pressure. The GWA was further annealed to obtain carbonized graphene-coated waste paper aerogel (C-GWA) for low density and excellent resilience. The C-GWA shows 3D porous structure formed by interpenetrated fibers and low density (25 mg/cm3). The pressure sensor based on C-GWA exhibits wide detection working range (0–132 kPa), ultra-low detection limit (2.5 Pa), and high sensitivity of (31.6 kPa−1). In addition, the pressure sensor can be used to detect human motions including the pulse of the human body, cheek blowing, and bending of human joints. The result indicates that the C-GWA-based sensor shows great potential for wearable electronic products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. M. Cao, J. Su, S. Fan, H. Qiu, D. Su, L. Li, Wearable piezoresistive pressure sensors based on 3D graphene. Chem. Eng. J. 406, 126777 (2021)

    Article  CAS  Google Scholar 

  2. Z. Zhan, R. Lin, V.T. Tran, J. An, Y. Wei, H. Du, T. Tran, W. Lu, Paper/carbon nanotube-based wearable pressure sensor for physiological signal acquisition and soft robotic skin. ACS Appl. Mater. Interfaces 9, 37921–37928 (2017)

    Article  CAS  Google Scholar 

  3. Y. Zhang, E. Ren, H. Tang, A. Li, C. Cui, R. Guo, M. Zhou, S. Jiang, H. Shen, Carbon nanotubes/acetylene black/Ecoflex with corrugated microcracks for enhanced sensitivity for stretchable strain sensors. J. Mater. Sci. 31, 14145–14156 (2020)

    CAS  Google Scholar 

  4. Y. Chen, L. Hu, C. Li, B. Dang, Q. Sun, T. Zhai, H. Li, A biomimetic-structured wood-derived carbon sponge with highly compressible and biocompatible properties for human-motion detection. InfoMat 2(6), 1225–1235 (2020)

    Article  CAS  Google Scholar 

  5. L. Huang, J. Chen, Y. Xu, D. Hu, X. Cui, D. Shi, Y. Zhu, Three-dimensional light-weight piezoresistive sensors based on conductive polyurethane sponges coated with hybrid CNT/CB nanoparticles. Appl. Surf. Sci 548, 149268 (2021)

    Article  CAS  Google Scholar 

  6. B. Peng, F. Zhao, J. **, Y. Ying, Recent advances in nanomaterial-enabled wearable sensors: material synthesis. Sensor Des Personal Health Monit Small 16(44), e2002681 (2020)

    Google Scholar 

  7. Y. Si, X. Wang, C. Yan, L. Yang, J. Yu, B. Ding, Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv Mater 28(43), 9512–9518 (2016)

    Article  CAS  Google Scholar 

  8. Z. **ao, W. Zhou, N. Zhang, Q. Zhang, X. **a, X. Gu, Y. Wang, S. **e, All-carbon pressure sensors with high performance and excellent chemical resistance. Small 15(13), e1804779 (2019)

    Article  Google Scholar 

  9. S. Wei, X. Qiu, J. An, Z. Chen, X. Zhang, Highly sensitive, flexible, green synthesized graphene/biomass aerogels for pressure sensing application. Compos. Sci. Technol. 207, 108730 (2021)

    Article  CAS  Google Scholar 

  10. C.M. Das, L. Kang, Q. Ouyang, K.T. Yong, Advanced low-dimensional carbon materials for flexible devices. InfoMat 2(4), 698–714 (2020)

    Article  CAS  Google Scholar 

  11. W. Wei, X. Qu, Extraordinary physical properties of functionalized graphene. Small 8(14), 2138–2151 (2012)

    Article  CAS  Google Scholar 

  12. Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju, Y. Li, X. Wang, D. Wang, M. Jian, Y. Zhang, R. Liang, H. Tian, Y. Yang, T.L. Ren, Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 12(3), 2346–2354 (2018)

    Article  CAS  Google Scholar 

  13. Y. Sun, D. Li, J.U. Kim, B. Li, S.-H. Cho, T.-I. Kim, J.-D. Nam, L. Ci, J. Suhr, Carbon aerogel reinforced PDMS nanocomposites with controllable and hierarchical microstructures for multifunctional wearable devices. Carbon 171, 758–767 (2021)

    Article  CAS  Google Scholar 

  14. R.M. Hodlur, M.K. Rabinal, Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite. Compos. Sci. Technol. 90, 160–165 (2014)

    Article  CAS  Google Scholar 

  15. P. Zhang, L. Lv, Y. Liang, J. Li, H. Cheng, Y. Zhao, L. Qu, A versatile, superelastic polystyrene/graphene capsule-like framework. J. Mater. Chem. A 4(26), 10118–10123 (2016)

    Article  CAS  Google Scholar 

  16. M. Salzano de Luna, Y. Wang, T. Zhai, L. Verdolotti, G.G. Buonocore, M. Lavorgna, H. **a, Nanocomposite polymeric materials with 3D graphene-based architectures: from design strategies to tailored properties and potential applications. Prog. Polym. Sci. 89, 213–249 (2019)

    Article  CAS  Google Scholar 

  17. S. Li, J. Wang, Z. Zhu, D. Liu, W. Li, G. Sui, C.B. Park, CVD carbon-coated carbonized loofah sponge loaded with a directionally arrayed MXene aerogel for electromagnetic interference shielding. J. Mater. Chem. A 9(1), 358–370 (2021)

    Article  CAS  Google Scholar 

  18. E. Lei, W. Li, C. Ma, S. Liu, An ultra-lightweight recyclable carbon aerogel from bleached softwood kraft pulp for efficient oil and organic absorption. Mater. Chem. Phys. 214, 291–296 (2018)

    Article  CAS  Google Scholar 

  19. P. Song, J. Cui, J. Di, D. Liu, M. Xu, B. Tang, Q. Zeng, J. **ong, C. Wang, Q. He, L. Kang, J. Zhou, R. Duan, B. Chen, S. Guo, F. Liu, J. Shen, Z. Liu, Carbon microtube aerogel derived from kapok fiber: an efficient and recyclable sorbent for oils and organic solvents. ACS Nano 14(1), 595–602 (2020)

    Article  CAS  Google Scholar 

  20. T. Zhang, D. Yuan, Q. Guo, F. Qiu, D. Yang, Z. Ou, Preparation of a renewable biomass carbon aerogel reinforced with sisal for oil spillage clean-up: inspired by green leaves to green Tofu. Food Bioprod Process. 114, 154–162 (2019)

    Article  CAS  Google Scholar 

  21. G. Ye, X. Zhu, S. Chen, D. Li, Y. Yin, Y. Lu, S. Komarneni, D. Yang, Nanoscale engineering of nitrogen-doped carbon nanofiber aerogels for enhanced lithium ion storage. J. Mater. Chem. A 5(18), 8247–8254 (2017)

    Article  CAS  Google Scholar 

  22. Z. Li, L. Shao, Z. Ruan, W. Hu, L. Lu, Y. Chen, Converting untreated waste office paper and chitosan into aerogel adsorbent for the removal of heavy metal ions. Carbohydr. Polym. 193, 221–227 (2018)

    Article  CAS  Google Scholar 

  23. A. Al-Azkawi, A. Elliston, S. Al-Bahry, N. Sivakumar, Waste paper to bioethanol: current and future prospective. Biofuel Bioprod Bior. 13(4), 1106–1118 (2019)

    Article  CAS  Google Scholar 

  24. A. Yamaguchi, N. Hiyoshi, O. Sato, K.K. Bando, M. Shirai, Gaseous fuel production from nonrecyclable paper wastes by using supported metal catalysts in high-temperature liquid water. Chemsuschem 3(6), 737–741 (2010)

    Article  CAS  Google Scholar 

  25. C. **, S. Han, J. Li, Q. Sun, Fabrication of cellulose-based aerogels from waste newspaper without any pretreatment and their use for absorbents. Carbohydr Polym 123, 150–156 (2015)

    Article  CAS  Google Scholar 

  26. T.-N. Ye, W.-J. Feng, B. Zhang, M. Xu, L.-B. Lv, J. Su, X. Wei, K.-X. Wang, X.-H. Li, J.-S. Chen, Converting waste paper to multifunctional graphene-decorated carbon paper: from trash to treasure. J. Mater. Chem. A 3(26), 13926–13932 (2015)

    Article  CAS  Google Scholar 

  27. Y. Sun, Y. Chu, W. Wu, H. **ao, Nanocellulose-based lightweight porous materials: a review. Carbohydr Polym 255, 117489 (2021)

    Article  CAS  Google Scholar 

  28. Y. Huang, X. Huang, M. Ma, C. Hu, F. Seidi, S. Yin, H. **ao, Recent advances on the bacterial cellulose-derived carbon aerogels. J. Mater. Chem. C 9(3), 818–828 (2021)

    Article  CAS  Google Scholar 

  29. L. Li, B. Li, H. Sun, J. Zhang, Compressible and conductive carbon aerogels from waste paper with exceptional performance for oil/water separation. J. Mater. Chem. A 5(28), 14858–14864 (2017)

    Article  CAS  Google Scholar 

  30. L. Li, T. Hu, H. Sun, J. Zhang, A. Wang, Pressure-sensitive and conductive carbon aerogels from poplars catkins for selective oil absorption and oil/water separation. ACS Appl Mater Interfaces 9(21), 18001–18007 (2017)

    Article  CAS  Google Scholar 

  31. H. Lai, H. Zhuo, Y. Hu, G. Shi, Z. Chen, L. Zhong, M. Zhang, Anisotropic carbon aerogel from cellulose nanofibers featuring highly effective compression stress transfer and pressure sensing. ACS Sustain Chem Eng. 9(29), 9761–9769 (2021)

    Article  CAS  Google Scholar 

  32. H. Zhuo, Y. Hu, Z. Chen, X. Peng, H. Lai, L. Liu, Q. Liu, C. Liu, L. Zhong, Linking renewable cellulose nanocrystal into lightweight and highly elastic carbon aerogel. ACS Sustain Chem Eng. 8(32), 11921–11929 (2020)

    Article  CAS  Google Scholar 

  33. R. Wu, L. Ma, A. Patil, Z. Meng, S. Liu, C. Hou, Y. Zhang, W. Yu, W. Guo, X.Y. Liu, Graphene decorated carbonized cellulose fabric for physiological signal monitoring and energy harvesting. J. Mater. Chem. A 8(25), 12665–12673 (2020)

    Article  CAS  Google Scholar 

  34. H. Bi, X. Huang, X. Wu, X. Cao, C. Tan, Z. Yin, X. Lu, L. Sun, H. Zhang, Carbon microbelt aerogel prepared by waste paper: an efficient and recyclable sorbent for oils and organic solvents. Small 10(17), 3544–3550 (2014)

    Article  CAS  Google Scholar 

  35. Y. Zhang, H. Tang, A. Li, C. Cui, R. Guo, H. **ao, E. Ren, S. Lin, J. Lan, S. Jiang, Extremely stretchable strain sensors with ultra-high sensitivity based on carbon nanotubes and graphene for human motion detection. J. Mater. Sci. 31(15), 12608–12619 (2020)

    CAS  Google Scholar 

  36. Z. Chen, Y. Hu, H. Zhuo, L. Liu, S. **g, L. Zhong, X. Peng, R.-C. Sun, Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 31(9), 3301–3312 (2019)

    Article  CAS  Google Scholar 

  37. Z. Yang, H. Li, S. Zhang, X. Lai, X. Zeng, Superhydrophobic MXene@carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor. Chem. Eng. J. 425, 130462 (2021)

    Article  CAS  Google Scholar 

  38. G. Ge, Y. Cai, Q. Dong, Y. Zhang, J. Shao, W. Huang, X. Dong, A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection. Nanoscale 10(21), 10033–10040 (2018)

    Article  CAS  Google Scholar 

  39. J. Kuang, Z. Dai, L. Liu, Z. Yang, M. **, Z. Zhang, Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors. Nanoscale 7(20), 9252–9260 (2015)

    Article  CAS  Google Scholar 

  40. Y. Tang, Q. Guo, Z. Chen, X. Zhang, C. Lu, In-situ reduction of graphene oxide-wrapped porous polyurethane scaffolds: synergistic enhancement of mechanical properties and piezoresistivity. Compos Part A 116, 106–113 (2019)

    Article  CAS  Google Scholar 

  41. C. Yang, W. Liu, N. Liu, J. Su, L. Li, L. **ong, F. Long, Z. Zou, Y. Gao, Graphene aerogel broken to fragments for a piezoresistive pressure sensor with a higher sensitivity. ACS Appl. Mater. Interfaces 11(36), 33165–33172 (2019)

    Article  CAS  Google Scholar 

  42. J. Yang, Y. Ye, X. Li, X. Lü, R. Chen, Flexible, conductive, and highly pressure-sensitive graphene-polyimide foam for pressure sensor application. Compos. Sci. Technol. 164, 187–194 (2018)

    Article  CAS  Google Scholar 

  43. H.B. Yao, J. Ge, C.F. Wang, X. Wang, W. Hu, Z.J. Zheng, Y. Ni, S.H. Yu, A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design. Adv. Mater. 25(46), 6692–6698 (2013)

    Article  CAS  Google Scholar 

  44. J. Wang, C. Zhang, D. Chen, M. Sun, N. Liang, Q. Cheng, Y. Ji, H. Gao, Z. Guo, Y. Li, D. Sun, Q. Li, H. Liu, Fabrication of a sensitive strain and pressure sensor from gold nanoparticle-assembled 3D-interconnected graphene microchannel-embedded PDMS. ACS Appl. Mater. Interfaces 12(46), 51854–51863 (2020)

    Article  CAS  Google Scholar 

  45. J. Huang, H. Wang, Z. Li, X. Wu, J. Wang, S. Yang, Improvement of piezoresistive sensing behavior of graphene sponge by polyaniline nanoarrays. J. Mater. Chem. C 7(24), 7386–7394 (2019)

    Article  CAS  Google Scholar 

  46. F.A. Khan, C.M. Ajmal, S. Bae, S. Seo, H. Moon, S. Baik, Silver nanoflower decorated graphene oxide sponges for highly sensitive variable stiffness stress sensors. Small 14(24), e1800549 (2018)

    Article  Google Scholar 

  47. F. Niu, Z. Qin, L. Min, B. Zhao, Y. Lv, X. Fang, K. Pan, Ultralight and hyperelastic nanofiber-reinforced MXene–graphene aerogel for high-performance piezoresistive sensor. Adv. Mater. Technol. 6(11), 2100394–2100402 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Sichuan Science and Technology Program (2021YFG0249), Cooperation Project between Sichuan University and Yibin City (2019CDYB-29), The National Natural Science Foundation of China and The Civil Aviation Administration of China (No. U1833118), and Engineering characteristic team of Sichuan University (2020SCUNG122).

Funding

Funding was provided by Sichuan Science and Technology Program (Grant Number 2021YFG0249), Cooperation Project between Sichuan University and Yibin City (Grant Number 2019CDYB-29), The National Natural Science Foundation of China and The Civil Aviation Administration of China (Grant Number U1833118), and Engineering characteristic team of Sichuan University (Grant Number 2020SCUNG122).

Author information

Authors and Affiliations

Authors

Contributions

AL: conceptualization, writing—original draft, and visualization. CC: visualization. WW: formal analysis. YZ: validation. JZ: methodology. RG: writing—review and editing and supervision. CC: project administration. WQ and ER: software. HX: resources. MZ and JZ: investigation.

Corresponding author

Correspondence to Ronghui Guo.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1872 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Cui, C., Wang, W. et al. Compressible and sensitive aerogels derived from graphene/waste paper for wearable pressure sensor. J Mater Sci: Mater Electron 33, 4388–4399 (2022). https://doi.org/10.1007/s10854-021-07631-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07631-6

Navigation