Log in

Investigation and optimization of ultrathin Cu(In,Ga)Se2 solar cells by using silvaco-TCAD tools

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper presents an investigation of ultrathin Cu (In1−xGax) Se2 solar cell which was calibrated from the fabricated cell using Silvaco-TCAD tools. Carrier transport mechanism and conduction band alignment at the CdS/CIGS interface shows a large influence on PV parameters. The influence of the absorber trap density on the electrical characteristics of the single junction cell was investigated under AM 1.5G one-sun (100 mW/cm2) illumination. Further simulations quantify significant improvements in cell efficiency while using a thin Al2O3 material as a rear passivation layer. In addition, the impact of the backside pitch size, opening width, absorber layer do**, and thickness on cell performance is investigated to enhance the cell efficiency. To evaluate our work, the electrical characteristics of the optimized cell were compared to the fabricated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Solar Frontier hits 23.35% efficiency with thin-film cell, Renewablesnow.Com (2019). http://www.news/solar-frontier-hits-2335-efficiency-with-thin-film-cell-639947/. Accessed 7 Feb 2019

  2. M. Powalla, S. Paetel, E. Ahlswede, R. Wuerz, C.D. Wessendorf, T. Magorian-Friedlmeier, Thin-film solar cells exceeding 22% solar cell efficiency: an overview on CdTe- Cu(In, Ga)Se2- and perovskite-based materials. Appl. Phys. Rev. 5, 041602 (2018)

    Article  Google Scholar 

  3. N. Boukortt, S. Patanè, Y.M. Abdulraheem, Numerical investigation of CIGS thin-film solar cells. Sol. Energy 204, 440–447 (2020)

    Article  CAS  Google Scholar 

  4. N. Boukortt, S. Patanè, M. Adouane, R. AlHammadi, Numerical optimization of ultrathin CIGS solar cells with rear surface passivation. Sol. Energy 220, 590–597 (2021)

    Article  CAS  Google Scholar 

  5. H.U. Sverdrup, K.V. Ragnarsdottir, D. Koca, An assessment of metal supply sustainability as an input to policy: security of supply extraction rates, stocks-in-use, recycling, and risk of scarcity. J. Clean. Prod. 140, 359–372 (2017). https://doi.org/10.1016/j.jclepro.2015.06.085

    Article  CAS  Google Scholar 

  6. British Geological Survey, Risk list (2015). http://www.bgs.ac.uk/mineralsuk/statistics/riskList.html

  7. T.M. Friedlmeier et al., Improved photocurrent in Cu(In, Ga)Se2 solar cells: from 20.8% to 21.7% efficiency with CdS buffer and 21.0% Cd-free. IEEE J. Photovolt. 5(5), 1487–1491 (2015). https://doi.org/10.1109/JPHOTOV.2015.2458039

    Article  Google Scholar 

  8. S. Schleussner, U. Zimmermann, T. Wätjen, K. Leifer, M. Edoff, Effect of gallium grading in Cu(In, Ga)Se2 solar-cell absorbers produced by multi-stage co-evaporation. Sol. Energy Mater. Sol. Cells 95, 721–726 (2011)

    Article  CAS  Google Scholar 

  9. M. Edoff, S. Schleussner, E. Wallin, O. Lundberg, Technological and economical aspects on the influence of reduced Cu(In, Ga)Se2 thickness and Ga grading for co-evaporated Cu(In, Ga)Se2 modules. Thin Solid Films 519, 7530–7533 (2011)

    Article  CAS  Google Scholar 

  10. W.-C. Chen, L. Stolt, M. Edoff, Ga/(Ga + In) grading effects on ultra-thin (UT) CIGS solar cell, in IEEE 40th Photovoltaic Specialist Conference (2019)

  11. R. Kotipalli et al., Influence of Ga/(Ga + In) grading on deep-defect states of Cu(In, Ga)Se2 solar cells. Phys. Status Solidi RRL 9, 157–160 (2015)

    Article  CAS  Google Scholar 

  12. J. Krc, G. Cernivec, A. Campa et al., Optical and electrical modeling of Cu(In, Ga)Se2 solar cells. Opt. Quant. Electron. 38, 1115–1123 (2006). https://doi.org/10.1007/s11082-006-9049-1

    Article  CAS  Google Scholar 

  13. J. Lontchi, M. Zhukova, M. Kovacic et al., Optimization of back contact grid size in Al2O3-rear-passivated ultrathin CIGS PV cells by 2-D simulations. IEEE J. Photovolt. (2020). https://doi.org/10.1109/JPHOTOV.2020.3012631

    Article  Google Scholar 

  14. J. Krc et al., Optical modeling and simulation of thin-film of Cu(In,Ga)Se2 solar cell, in International Conference on Numerical Simulation of Semiconductor Optoelectronic Devices (2006), pp. 33–34

  15. J. Krc, M. Sever, A. Campa, Z. Lokar, B. Lipovsek, M. Topic, Optical confinement in chalcopyrite based solar cells. Thin Solid Films 633, 193–201 (2017). https://doi.org/10.1016/j.tsf.2016.08.056

    Article  CAS  Google Scholar 

  16. N. Boukortt, S. Patanè, Single junction-based thin-film CIGS solar cells optimization with efficiencies approaching 24.5%. Optik 218, 165240 (2020)

    Article  CAS  Google Scholar 

  17. Silvaco International Ltd, ATLAS User’s Manual Device Simulation Software (Silvaco International Ltd., Santa Clara, 2016)

    Google Scholar 

  18. O. Lundberg, M. Bodegård, J. Malmström, L. Stolt, Influence of the Cu(In, Ga)Se2 thickness and Ga grading on solar cell performance. Prog. Photovolt. Res. Appl. 11, 77–88 (2003). https://doi.org/10.1002/pip.462

    Article  CAS  Google Scholar 

  19. Refractiveindex, info, RefractiveIndex.INFO (2019). https://refractiveindex.info/?shelf=main&book=Al2O3&page=Malitson-o. Accessed 24 Jan 2019

  20. M. Kovacic, J. Krc, B. Lipovsek, W.C. Chen, M. Edoff, P.J. Bolt, J. van Deelen, M. Zhukova, J. Lontchi, D. Flandre, P. Salomé, M. Topic, Light management design in ultra-thin chalcopyrite photovoltaic devices by employing optical modelling. Sol. Energy Mater. Sol. Cells 200, 109933 (2019)

    Article  CAS  Google Scholar 

  21. R. Kotipalli et al., Investigating the electronic properties of Al2 O3 /Cu(In, Ga)Se2 interface. AIP Adv. 5, 107101 (2015)

    Article  Google Scholar 

  22. R. Kotipalli et al., Passivation effects of atomic-layer-deposited alu- minum oxide. EPJ Photovolt. 4, 45107 (2013)

    Article  Google Scholar 

  23. N. Boukortt, S. Patanè, Single junction-based thin-film CIGS solar cells optimization with efficiencies approaching 24.5 %. Optik 218, 165240 (2020)

    Article  CAS  Google Scholar 

  24. N. Boukortt, Numerical optimization of 0.5-μm-thick Cu (In1-xGax) Se2 solar cell. Optik 200, 163409 (2019)

    Article  Google Scholar 

  25. J. Goffard, C. Colin, F. Mollica, A. Cattoni, C. Sauvan, P. Lalanne, J.-F. Guillemoles, N. Naghavi, S. Colli, Light trap** in ultrathin CIGS solar cells with nanostructured back mirrors. IEEE J. Photovolt. 7, 1433–1441 (2017)

    Article  Google Scholar 

  26. J. Joel, Characterization of Al2O3 as CIGS surface passivation layer in high-efficiency CIGS solar cells. In PhD thesis, Uppsala Universitet, Sweden (2014).

Download references

Acknowledgements

This research work is partially supported by Semiconductor Laboratory (GE01/08), Kuwait University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nour El I. Boukortt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukortt, N.E.I., AlAmri, A.M., Bouhjar, F. et al. Investigation and optimization of ultrathin Cu(In,Ga)Se2 solar cells by using silvaco-TCAD tools. J Mater Sci: Mater Electron 32, 21525–21538 (2021). https://doi.org/10.1007/s10854-021-06661-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06661-4

Navigation