Log in

Polyaniline-supported Al-doped MnO2@carbon cloth-based electrode material for quasi-solid-state flexible supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As one of the most promising electrode materials for supercapacitors, MnO2 has the problems of low voltage window and poor conductivity. It has been shown that Al-doped MnO2 can effectively improve the voltage window and specific capacitance, and polyaniline loading can further bring higher specific capacitance. Polyaniline-supported Al-doped MnO2 carbon cloth-based flexible electrode material (PANI@Al-MnO2@CC) was prepared by hydrothermal reaction and in-situ polymerization. Compared with MnO2 electrode material, the working voltage window of PANI@Al-MnO2@CC is increases to 1.25 V, the area specific capacitance can be as high as 1016 mF cm−2, and still maintain 80.1% of the original value at 20 mA cm−2 after 5000 cycles. Furthermore, the voltage window of the flexible symmetrical supercapacitor made of the material can reach 0–2.4 V, and has a super large area specific capacitance of 149.75 mF cm−2 and a high energy density of 1.60 mWh cm−3 at 6 mA cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Miao, Z. Song, D. Zhu, L. Li, L. Gan, M. Liu, Ionic Liquids for supercapacitive energy storage: A mini-review. Energ. Fuels 35, 8443–8455 (2021)

    Article  CAS  Google Scholar 

  2. M. Mansuer, L. Miao, D. Zhu, H. Duan, Y. Lv, L. Li, M. Liu, L. Gan, Facile construction of highly redox active carbons with regular micropores and rod-like morphology towards high-energy supercapacitors. Mater. Chem. Front. 5, 3061–3072 (2021)

    Article  CAS  Google Scholar 

  3. J. Yan, L. Miao, H. Duan, D. Zhu, Y. Lv, W. ** for efficient energy storage. Electrochim. Acta 358, 136899 (2020)

    Article  CAS  Google Scholar 

  4. J. Chen, J. Wu, X. Wang, A. Zhou, Z. Yang, Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries. Energy Storage Mater. 35, 70–87 (2021)

    Article  Google Scholar 

  5. J. Zeng, N. Fu, X. Wang, A. Zhou, Z. Yang, Multipath conduction and large capacity silicon-based anodes for high stabilizing lithium-ion batteries. Appl. Surf. Sci. 557, 149860 (2021)

    Article  CAS  Google Scholar 

  6. O.S. Powar, L. Bhatta, R. Prasad, K. Venkatesh, A.V. Raghu, Influence of carbon based electrodes on the performance of the microbial fuel cell. Int. J. Res. Granthaalayah 5, 7–16 (2017)

    Article  Google Scholar 

  7. N.F. Hamed, B.P. Ghobad, N.S. Mehdi, E. Parisa, PVA-based supercapacitors. Ionics 25, 2951–2963 (2019)

    Article  CAS  Google Scholar 

  8. Q. Zhu, D. Zhao, M. Cheng, J. Zhou, K.A. Owusu, L. Mai, Y. Yu, A new view of supercapacitors: Integrated supercapacitors. Adv. Energy Mater. 9, 1901081 (2019)

    Article  CAS  Google Scholar 

  9. J. Yu, M. Li, X. Wang, Z. Yang, Promising high-performance supercapacitor electrode materials from MnO2 nanosheets@bamboo leaf carbon. ACS Omega 5, 16299–16306 (2020)

    Article  CAS  Google Scholar 

  10. Z. Zhang, X. Zhang, W. Chen, Y. Rasim, W. Salman, H. Pan, Y. Yuan, C. Wang, A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle. Appl. Energ. 178, 177–188 (2016)

    Article  Google Scholar 

  11. J.H. Peter, M. Mojtaba, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O. Shitta-Bey, G. Wilson, A. Cruden, R. Carter, Energy storage in electrochemical capacitors: Designing functional materials to improve performance. Energ. Environ. Sci. 9, 1236–1251 (2010)

    Google Scholar 

  12. C. Peter, M. Tariq, C. Kevin, Cutting vehicle emissions with regenerative braking. Transport. Res. D-Tr. E. 3, 160–167 (2010)

    Google Scholar 

  13. Z. Pang, J. Duan, Y. Zhao, Q. Tang, B. He, L. Yu, A ceramic NiO/ZrO2 separator for high-temperature supercapacitor up to 140 °C. J. Power Sources 400, 126–134 (2018)

    Article  CAS  Google Scholar 

  14. J. Cao, Y. Zhao, Y. Xu, Y. Zhang, B. Zhang, H. Peng, Sticky-note supercapacitors. J. Mater. Chem. A 6, 3355–3360 (2018)

    Article  CAS  Google Scholar 

  15. L. Li, Z.A. Hu, N. An, Y.Y. Yang, Z.M. Li, H.Y. Wu, Facile synthesis of MnO2 /CNTs composite for supercapacitor electrodes with long cycle stability. J. Phys. Chem. C 118, 22865–22872 (2014)

    Article  CAS  Google Scholar 

  16. M. Li, J. Yu, X. Wang, Z. Yang, 3D porous MnO2@carbon nanosheet synthesized from rambutan peel for high-performing supercapacitor electrodes materials. Appl. Surf. Sci. 530, 147230 (2020)

    Article  CAS  Google Scholar 

  17. D.I. Tishkevich, A.I. Vorobjova, D.A. Vinnik, Template assisted Ni nanowires fabrication. Mater. Sci. Forum 946, 235–241 (2019)

    Article  Google Scholar 

  18. A.I. Vorobjova, D.L. Shimanovich, O.A. Sycheva, T.I. Ezovitova, D.I. Tishkevich, A.V. Trykhanov, Studying the thermodynamic properties of composite magnetic material based on anodic alumina. Russ. Microelectron. 48, 107–118 (2019)

    Article  CAS  Google Scholar 

  19. D.I. Tishkevich, A.I. Vorobjova, A.V. Trukhanov, Thermal stability of nano-crystalline nickel electrodeposited into porous alumina. Solid St. Pheno. 299, 281–286 (2020)

    Article  Google Scholar 

  20. D. Tishkevich, S. Grabchikov, T. Zubar, D. Vasin, S. Trukhanov, A. Vorobjova, D. Yakimchuk, A. Kozlovskiy, M. Zdorovets, S. Giniyatova, D. Shimanovich, D. Lyakhov, D. Michels, M. Dong, S. Gudkova, A. Trukhanov, Early-stage growth mechanism and synthesis conditions-dependent morphology of nanocrystalline Bi films electrodeposited from perchlorate electrolyte. Nanomaterials 10, 1245 (2020)

    Article  CAS  Google Scholar 

  21. H. Wang, C. Xu, Y. Chen, Y. Wang, MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density. Energy Storage Mater. 8, 127–133 (2017)

    Article  Google Scholar 

  22. W. Yang, Z. Gao, J. Ma, X. Zhang, J. Wang, J. Liu, Hierarchical NiCo2O4@NiO core-shell hetero-structured nanowire arrays on carbon cloth for a high-performance flexible all-solid-state electrochemical capacitor. J. Mater. Chem. A 2, 1448–1457 (2014)

    Article  CAS  Google Scholar 

  23. Z. Huang, Z. Zhang, X. Qi, X. Ren, G. Xu, P. Wan, X. Sun, H. Zhang, Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes. Nanoscale 8, 13273–13279 (2016)

    Article  CAS  Google Scholar 

  24. P.A. Shinde, A.C. Lokhande, N.R. Chodankar, A.M. Patil, J.H. Kim, C.D. Lokhande, Temperature dependent surface morphological modifications of hexagonal WO3 thin films for high performance supercapacitor application. Electrochim. Acta 224, 397–404 (2017)

    Article  CAS  Google Scholar 

  25. Y.J. Gu, W. Wen, S. Zheng, J.M. Wu, Rapid synthesis of high-areal-capacitance ultrathin hexagon Fe2O3 nanoplates on carbon cloth via a versatile molten salt method. Mater. Chem. Front. 4, 2744–2753 (2020)

    Article  CAS  Google Scholar 

  26. R. Jia, Y. Jiang, R. Li, R. Chai, Z. Lou, G. Shen, D. Chen, Nb2O5 nanotubes on carbon cloth for high performance sodium-ion capacitors. Sci. China Mater. 63, 1171–1181 (2020)

    Article  CAS  Google Scholar 

  27. I. Inamuddin, A.M. Asiri, E. Lichtfouse, Nanophotocatalysis and Environmental Applications. Environ. Chem. Sust. World (2020). https://doi.org/10.1007/978-3-030-12619-3

    Article  Google Scholar 

  28. P. Tang, L. Han, L. Zhang, Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes. ACS Appl. Mater. Inter. 6, 10506–10515 (2014)

    Article  CAS  Google Scholar 

  29. J. Han, L. Li, P. Fang, R. Guo, Ultrathin MnO2 nanorods on conducting polymer nanofibers as a new class of hierarchical nanostructures for high-performance supercapacitors. J. Phys. Chem. C 116, 15900–15907 (2012)

    Article  CAS  Google Scholar 

  30. R.P. Mahore, S.B. Kondawar, D.K. Burghate, B.H. Meshram, Electrochemical performance of polyaniline/CNT/MnO2 and polypyrrole/CNT/MnO2 ternary nanocomposites as electrode materials for supercapacitor. J. Chin. Adv. Mater. Soc. 3, 45–56 (2015)

    Article  CAS  Google Scholar 

  31. M. Rajesh, C.J. Raj, R. Manikandan, B.C. Kim, S.Y. Park, K.H. Yu, A high performance PEDOT/PEDOT symmetric supercapacitor by facile in-situ hydrothermal polymerization of PEDOT nanostructures on flexible carbon fibre cloth electrodes. Mater. Today Energy 6, 96–104 (2017)

    Article  Google Scholar 

  32. T. **ao, P. Chen, S. Wang, W. Zhou, F. Chen, F. Tao, X. Chen, X. Tan, P. **ang, L. Jiang, X. Chen, A novel two-prong strategy to boost the capacitive performance of commercial carbon cloth. J. Alloy. Compd. 831, 154615 (2020)

    Article  CAS  Google Scholar 

  33. Q. Zhou, D. Zhu, X. Ma, D. Mo, F. Jiang, J. Xu, W. Zhou, PEDOT: PSS-assisted polyindole hollow nanospheres modified carbon cloth as high performance electrochemical capacitor electrodes. Electrochim. Acta 212, 662–670 (2016)

    Article  CAS  Google Scholar 

  34. K.R. Reddy, B. Hemavathi, G.R. Balakrishna, A.V. Raghu, S. Naveen, M.V. Shankar, Polymer Composites with Functionalized Nanoparticles (Elsevier, Amsterdam, 2019), pp. 357–379

    Book  Google Scholar 

  35. R. Prabhu, B. Roopashree, T. Jeevananda, S. Rao, K.R. Reddy, A.V. Raghu, Synthesis and corrosion resistance properties of novel conjugated polymer-Cu2Cl4L3 composites. Mater. Sci. Energy Techn. 4, 92–99 (2021)

    CAS  Google Scholar 

  36. B. Joyita, D. Kingshu, K.M. Abdul, K.N. Sanjay, An overview on the recent developments in polyaniline-based supercapacitors. Polym. Adv. Technol. 30, 1902–1921 (2019)

    Article  CAS  Google Scholar 

  37. X. He, B. Gao, G. Wang, J. Wei, C. Zhao, A new nanocomposite: Carbon clothbased polyaniline for an electrochemical supercapacitor. Electrochim. Acta 111, 210–215 (2013)

    Article  CAS  Google Scholar 

  38. T. Wu, C. Wang, Y. Mo, X. Wang, J. Fan, Q. Xu, Y. Min, A ternary composite with manganese dioxide nanorods and graphene nanoribbons embedded in a polyaniline matrix for high-performance supercapacitors. RSC Adv. 53, 33591–33599 (2017)

    Article  Google Scholar 

  39. L.-H. Tseng, C.-H. Hsiao, D.D. Nguyen, P.-Y. Hsieh, C.-Y. Lee, N.-H. Tai, Activated carbon sandwiched manganese dioxide/graphene ternary composites for supercapacitor electrodes. Electrochim. Acta 266, 284–292 (2018)

    Article  CAS  Google Scholar 

  40. H. Li, J. Liang, H. Li, X. Zheng, Y. Tao, Z.-H. Huang, Q.-H. Yang, Activated carbon fibers with manganese dioxide coating for flexible fiber supercapacitors with high capacitive performance. J. Energy Chem. 31, 95–100 (2019)

    Article  Google Scholar 

  41. M. Xu, Y. Cai, T. Wang, X. Wang, A. Zhou, Z. Yang, Two-dimensional Mg-doped MnO2@carbon cloth nanosheets for high performance typical flexible solid supercapacitor. J. Alloy. Compd. 877, 160243 (2021)

    Article  CAS  Google Scholar 

  42. J. Zhu, Q. Zhang, H. Chen, R. Zhang, L. Liu, J. Yu, Setaria viridis-inspired electrode with polyaniline decorated on porous heteroatom-doped carbon nanofibers for flexible supercapacitors. ACS Appl. Mater. Interfaces 12, 43634–43645 (2020)

    Article  CAS  Google Scholar 

  43. A. Eftekhari, L. Li, Y. Yang, Polyaniline supercapacitors. J. Power Sources 347, 86–107 (2017)

    Article  CAS  Google Scholar 

  44. S. Jadhav, R.S. Kalubarme, C. Terashima, B.B. Kale, V. Godbole, A. Fujishima, S.W. Gosavi, Manganese dioxide/reduced graphene oxide composite an electrode material for high-performance solid state supercapacitor. Electrochim. Acta 299, 34–44 (2019)

    Article  CAS  Google Scholar 

  45. M. Xu, N. Fu, X. Wang, Z. Yang, A high energy density flexible symmetric supercapacitor based on Al-doped MnO2 nanosheets@carbon cloth electrode materials. J. Mater. Sci-Mater. EI. 31, 16027–16036 (2020)

    Article  CAS  Google Scholar 

  46. R.S. Kalubarme, M.-S. Cho, K.-S. Yun, T.-S. Kim, C.-J. Park, Catalytic characteristics of MnO2 nanostructures for the O2 reduction process. Nanotechnology 22, 395402 (2011)

    Article  CAS  Google Scholar 

  47. A. Shirmardi, M.A.M. Teridi, H.R. Azimi, W.J. Basirun, F. Jamali-Sheini, R. Yousefi, Enhanced photocatalytic performance of ZnSe/PANI nanocomposites for degradation of organic and inorganic pollutants. Appl. Surf. Sci. 462, 730–738 (2018)

    Article  CAS  Google Scholar 

  48. M.M. Mezgebe, Z. Yan, G. Wei, S. Gong, F. Zhang, S. Guang, H. Xu, 3D graphene-Fe3O4-polyaniline, a novel ternary composite for supercapacitor electrodes with improved electrochemical properties. Mater. Today Energy 5, 164–172 (2017)

    Article  Google Scholar 

  49. L. Yu, M. Gan, L. Ma, H. Huang, H. Hu, Y. Li, Y. Tu, C. Ge, F. Yang, J. Yan, Facile synthesis of MnO2/polyaniline nanorod arrays based on graphene and its electrochemical performance. Synthetic Met. 198, 167–174 (2014)

    Article  CAS  Google Scholar 

  50. R. Prabhu, T. Jeevananda, K.R. Reddy, A.V. Raghu, Polyaniline-fly ash nanocomposites synthesized via emulsion polymerization: Physicochemical, thermal and dielectric properties. Mater. Sci. Energy Techn. 4, 107–112 (2021)

    CAS  Google Scholar 

  51. K.R. Reddy, K.V. Karthik, S.B.B. Prasad, S.K. Soni, H.M. Jeong, A.V. Raghu, Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120, 169–174 (2016)

    Article  CAS  Google Scholar 

  52. S.X. Wang, L.X. Sun, Z.C. Tan, F. Xu, Y.S. Li, Synthesis, characterization and thermal analysis of polyaniline (PANI)/Co3O4 composites. J. Therm. Anal. Cal. 89, 609–612 (2007)

    Article  CAS  Google Scholar 

  53. J. Zhang, D. Shu, T. Zhang, H. Chen, H. Zhao, Y. Wang, Z. Sun, S. Tang, X. Fang, X. Cao, Capacitive properties of PANI/MnO2 synthesized via simultaneous-oxidation route. J. Alloy. Compd. 532, 1–9 (2012)

    Article  CAS  Google Scholar 

  54. J.H. Jang, K. Machida, Y. Kim, K. Naoi, Electrophoretic deposition (EPD) of hydrous ruthenium oxides with PTFE and their supercapacitor performances. Electrochim. Acta 52, 1733–1741 (2006)

    Article  CAS  Google Scholar 

  55. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103–13107 (2009)

    Article  CAS  Google Scholar 

  56. X. Liang, G. Long, C. Fu, M. Pang, Y. **, J. Li, W. Han, G. Wei, Y. Ji, High performance all-solid-state flexible supercapacitor for wearable storage device application. Chemi. Eng. J. 345, 186–195 (2018)

    Article  CAS  Google Scholar 

  57. X. Li, J. Shao, S.-K. Kim, C. Yao, J. Wang, Y.-R. Miao, Q. Zheng, P. Sun, R. Zhang, P.V. Braun, High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes. Nat. Commun. 9, 2578 (2018)

    Article  CAS  Google Scholar 

  58. S. **, Y. Zhu, Y. Yang, Y. Liu, Direct synthesis of MnO2 nanorods on carbon cloth as flexible supercapacitor electrode. J. Nanomater. (2017). https://doi.org/10.1155/2017/7340961

    Article  Google Scholar 

  59. P. Sivaraman, R. Kushwaha, K. Shashidhara, V. Hande, A. Thakur, A. Samui, M. Khandpekar, All solid supercapacitor based on polyaniline and crosslinked sulfonated poly [ether ether ketone]. Electrochim. Acta 55, 2451–2456 (2010)

    Article  CAS  Google Scholar 

  60. H. Jiang, J. Ma, C. Li, Polyaniline-MnO2 coaxial nanofiber with hierarchical structure for high-performance supercapacitors. J. Mater. Chem. 22, 16939 (2012)

    Article  CAS  Google Scholar 

  61. X. Wang, H. Wei, W. Du, X. Sun, L. Kang, Y. Zhang, X. Zhao, F. Jiang, Recycled carbon fiber-supported polyaniline/manganese dioxide prepared via one-step electrodeposition for flexible supercapacitor integrated electrodes. Polymers-Basel 10, 1152 (2018)

    Article  CAS  Google Scholar 

  62. S.M. Jadhav, R.S. Kalubarme, N. Suzuki, C. Terashima, J. Mun, B.B. Kale, S.W. Gosavi, A. Fujishima, Cobalt-doped manganese dioxide hierarchical nanostructures for enhancing pseudocapacitive properties. ACS Omega 6, 5717–5729 (2021)

    Article  CAS  Google Scholar 

  63. J. Kim, H. Ju, A.I. Inamdar, Y. Jo, J. Han, H. Kim, H. Im, Synthesis and enhanced electrochemical supercapacitor properties of Ag-MnO2-polyaniline nanocomposite electrodes. Energy 70, 473–477 (2014)

    Article  CAS  Google Scholar 

  64. C. **a, Y. **e, H. Du, W. Wang, Ternary nanocomposite of polyaniline/manganese dioxide/titanium nitride nanowire array for supercapacitor electrode. J. Nanopart. Res. 17, 12–30 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key Research and Development Program of China (2017YFA0204600) and the Fundamental Research Funds for the Central Universities (No. 22120210170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenglong Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (doc 2382 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Wang, R., Xu, M. et al. Polyaniline-supported Al-doped MnO2@carbon cloth-based electrode material for quasi-solid-state flexible supercapacitor. J Mater Sci: Mater Electron 32, 19820–19831 (2021). https://doi.org/10.1007/s10854-021-06505-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06505-1

Navigation