Log in

A soil-based pressure sensor for human motion monitoring

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With advancements in the Internet of things (IoT) technology, the construction of the self-powered distributed sensor network is important. Here, we proposed a low-cost triboelectric nanogenerator based on soil (S-TENG) to convert mechanical energy into electrical energy, and meanwhile, it can serve as the self-powered pressure sensor. The natural soil and polytetrafluoroethylene (PTFE) film play the role of triboelectric layers. The electrical performance of the S-TENG (size: 5 cm × 5 cm) is 344.7 V, 34.8 µA, 68.95 nC, and 0.99 mW. Besides, we also design a self-powered pressure sensor based on the S-TENG, and the brightness of light-emitting diodes (LEDs) can reflect the pressure. This research can release a new applications for pressure monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Nesarajah, G. Frey, Multiphysics simulation in the development of thermoelectric energy harvesting systems. J. Electron. Mater. 45, 1408–1411 (2016)

    Article  CAS  Google Scholar 

  2. E. Karakaya, F. Bagci, A.E. Yilmaz, B. Akaoglu, Metamaterial-based four-band electromagnetic energy harvesting at commonly used GSM and Wi-Fi frequencies. J. Electron. Mater. 48, 2307–2316 (2019)

    Article  CAS  Google Scholar 

  3. P.K. Panda, B. Sahoo, M. Chandraiah, S. Raghavan, B. Manoj, J. Ramakrishna, P. Kiran, Piezoelectric energy harvesting using PZT bimorphs and multilayered stacks. J. Electron. Mater. 44, 4349–4353 (2015)

    Article  CAS  Google Scholar 

  4. R.M. Raghavendra, K.P.S.S. Praneeth, S. Dutta, Preparation and Characterization of BaTiO 3–PbZrTiO 3 Coating for Pyroelectric Energy Harvesting. J. Electron. Mater. 46, 101–106 (2017)

    Article  CAS  Google Scholar 

  5. Z.H. Lin, Y. Yang, J.M. Wu, Y. Liu, F. Zhang, Z.L. Wang, BaTiO3 nanotubes-based flexible and transparent nanogenerators. The journal of physical chemistry letters 3, 3599–3604 (2012)

    Article  CAS  Google Scholar 

  6. K. Dong, Z. Wu, J. Deng, A.C. Wang, H. Zou, C. Chen, Z.L. Wang, A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 30, 1804944 (2018)

    Article  Google Scholar 

  7. Z. Wen, M.H. Yeh, H. Guo, J. Wang, Y. Zi, W. Xu, L. Zhu, Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2, e1600097 (2016)

    Article  Google Scholar 

  8. M. Manjunatha, R. Kumar, A.V. Anupama et al., XRD, internal field-NMR and Mössbauer spectroscopy study of composition, structure and magnetic properties of iron oxide phases in iron ores. J. Market. Res. 8, 2192–2200 (2019)

    CAS  Google Scholar 

  9. H. Guo, X. Pu, J. Chen, Y. Meng, M.H. Yeh, G. Liu, C. Wu, A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 3, 2516 (2018)

    Article  Google Scholar 

  10. X. Wang, Z.L. Wang, Y. Yang, Hybridized nanogenerator for simultaneously scavenging mechanical and thermal energies by electromagnetic-triboelectric-thermoelectric effects. Nano Energy 26, 164–171 (2016)

    Article  CAS  Google Scholar 

  11. C.-H. Wang, W.-S. Liao, Z.-H. Lin, Ku. Nai-Jen, Y.-C. Li, Y.-C. Chen, Z.-L. Wang, C.-P. Liu, Optimization of the Output Effi ciency of GaN Nanowire Piezoelectric Nanogenerators by Tuning the Free Carrier Concentration. Adv. Energy Mater. 4, 1400392 (2014)

    Article  Google Scholar 

  12. X. He, Y. Zi, H. Guo, H. Zheng, Y. **, C. Wu, Z.L. Wang, A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics. Adv. Func. Mater. 27, 1604378 (2017)

    Article  Google Scholar 

  13. Yao, G., Xu, L., Cheng, X., Li, Y., Huang, X., Guo, W., Wu, H. Bioinspired Triboelectric Nanogenerators as Self-Powered Electronic Skin for Robotic Tactile Sensing. Advanced Functional Materials, 2019, 1907312.

  14. J. Luo, Z. Wang, L. Xu, A.C. Wang, K. Han, T. Jiang, Z.L. Wang, Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat. Commun. 10, 1–9 (2019)

    Article  Google Scholar 

  15. Z. Lin, Z. Wu, B. Zhang, Y.C. Wang, H. Guo, G. Liu, Z.L. Wang, A triboelectric nanogenerator-based smart insole for multifunctional gait monitoring. Advanced Materials Technologies 4, 1800360 (2019)

    Article  Google Scholar 

  16. C. Chen, L. Chen, Z. Wu, H. Guo, W. Yu, Z. Du, Z.L. Wang, 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors. Mater. Today 32, 84–93 (2020)

    Article  CAS  Google Scholar 

  17. Z. Wang, G. Meng, L. Wang et al., Simultaneously enhanced dielectric properties and through-plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets[J]. Sci. Rep. 11(1), 1–11 (2021)

    Article  CAS  Google Scholar 

  18. P. Yin, B. You, Materials today energy. Mater. Today 19, 100586 (2021)

    CAS  Google Scholar 

  19. X. Zhou, Z. Jia, X. Zhang et al., Controllable synthesis of Ni/NiO@ porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth. J. Mater. Sci. Technol. 87, 120–132 (2021)

    Article  Google Scholar 

  20. Hou T, Jia Z, Wang B, et al. Metal-organic framework-derived NiSe2-CoSe2@ C/Ti3C2Tx composites as electromagnetic wave absorbers. Chemical Engineering Journal, 2021: 130079.

  21. Zhang H, Jia Z, Wang B, et al. Construction of remarkable electromagnetic wave absorber from heterogeneous structure of Co-CoFe2O4@ mesoporous hollow carbon spheres[J]. Chemical Engineering Journal, 2021: 129960.

  22. X. Zhou, Z. Jia, X. Zhang et al., Electromagnetic wave absorption performance of NiCo2X4 (X= O, S, Se, Te) spinel structures. Chem Eng J 420, 129907 (2021)

    Article  CAS  Google Scholar 

  23. Z. Ren, J. Nie, J. Shao, Q. Lai, L. Wang, J. Chen, Z.L. Wang, Fully elastic and metal-free tactile sensors for detecting both Normal and tangential forces based on triboelectric nanogenerators. Adv. Func. Mater. 28, 1802989 (2018)

    Article  Google Scholar 

  24. P. Azad, Design and Analysis of a Synchronized Interface Circuit for Triboelectric Energy Harvesting. J. Electron. Mater. 49, 2491–2501 (2020)

    Article  Google Scholar 

  25. J. Shao, T. Jiang, W. Tang, X. Chen, L. Xu, Z.L. Wang, Structural figure-of-merits of triboelectric nanogenerators at powering loads. Nano Energy 51, 688–697 (2018)

    Article  CAS  Google Scholar 

  26. H. Wang, D. Li, W. Zhong, L. Xu, T. Jiang, Z.L. Wang, Self-powered inhomogeneous strain sensor enabled joint motion and three-dimensional muscle sensing. ACS Appl. Mater. Interfaces. 11, 34251–34257 (2019)

    Article  CAS  Google Scholar 

  27. M. Zhang, Y. Jie, X. Cao, J. Bian, T. Li, N. Wang, Z.L. Wang, Robust design of unearthed single-electrode TENG from three-dimensionally hybridized copper/polydimethylsiloxane film. Nano Energy 30, 155–161 (2016)

    Article  CAS  Google Scholar 

  28. Singh, M., Sheetal, A., Singh, H., Sawhney, R. S., Kaur, J. Animal Hair-Based Triboelectric Nanogenerator (TENG): A Substitute for the Positive Polymer Layer in TENG. Journal of Electronic Materials, 2020, 1–8.

  29. Y.H. Kim, I.K. Lee, Y.S. Song, M.H. Lee, B.Y. Kim, N.I. Cho, D.Y. Lee, Influence of TiO2 coating thickness on energy conversion efficiency of dye-sensitized solar cells. Electron. Mater. Lett. 10, 445–449 (2014)

    Article  CAS  Google Scholar 

  30. V. Singhn, H.M. Agrawal, Qualitative soil mineral analysis by EDXRF, XRD and AAS probes. Radiat. Phys. Chem. 81, 1796–1803 (2012)

    Article  Google Scholar 

  31. X. Li, Z.H. Lin, G. Cheng et al., 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. ACS Nano 8(10), 10674–10681 (2014)

    Article  CAS  Google Scholar 

  32. X.S. Zhang, M. Su, J. Brugger et al., Penciling a triboelectric nanogenerator on paper for autonomous power MEMS applications. Nano Energy 33, 393–401 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 812 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Wang, K. A soil-based pressure sensor for human motion monitoring. J Mater Sci: Mater Electron 32, 18282–18290 (2021). https://doi.org/10.1007/s10854-021-06370-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06370-y

Navigation