Log in

Ordering-induced domains in sub-micron-sized Ba(Zn1/3Ta2/3)O3–BaZrO3 microwave ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The miniaturization of microwave and/or radio frequency devices and equipment has been driving the development of dielectric ceramics in wireless communication. (1 − x)Ba(Zn1/3Ta2/3)O3xBaZrO3 (BZT–BZ) microwave ceramics with sub-micron-sized structure are fabricated by spark plasma sintering (SPS). The do** levels of BaZrO3 significantly affect the B-site ordering structures of sub-micron-sized BZT–BZ ceramics. The 1:2 ordering domains gradually transform into 1:1 ordering domains in SPS-sintered BZT–BZ ceramics when BaZrO3 do** levels increase (from 1 to 4%). The dielectric loss of BZT–BZ ceramics can decrease significantly by annealing. Quality factor is increased to 40,000 GHz from 15,000 GHz. The number of B-site 1:2 ordering domains increases significantly in annealing process, but their size keeps stable in BZT–BZ ceramics with sub-micron-sized structure. The grain boundaries rather than B-site ordering domains and domain boundaries have a major influence on the degradation of the quality factor of sub-micron-sized BZT–BZ microwave ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.J. Cava, Dielectric materials for applications in microwave communications. J. Mater. Chem. 11, 54–62 (2001)

    Article  CAS  Google Scholar 

  2. I.M. Reaney, D. Iddles, Microwave dielectrics ceramics for resonators and filters in mobile Phone Network. J. Am. Ceram. Soc. 89, 2063–2072 (2006)

    CAS  Google Scholar 

  3. M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60, 1743280415Y.000 (2015)

    Article  Google Scholar 

  4. Y. Higuchi, H. Tamura, Recent progress on the dielectric properties of dielectric resonator materials with their applications from microwave to optical frequencies. J. Eur. Ceram. Soc. 23, 2683–2688 (2003)

    Article  CAS  Google Scholar 

  5. S. Zhang, A. Devonport, N. Newman, Main source of microwave loss in transition-metal-doped Ba(Zn1/3Ta2/3)O3 and Ba(Zn1/3Nb2/3)O3 at cryogenic temperatures. J. Am. Ceram. Soc. 98, 1188–1194 (2015)

    Article  CAS  Google Scholar 

  6. P.K. Davies, J. Tong, T. Negas, Effect of ordering-induced domain boundaries on low-loss Ba(Zn1/3Ta2/3)O3–BaZrO3 perovskite microwave dielectrics. J. Am. Ceram. Soc. 80, 1724–1740 (1997)

    Google Scholar 

  7. M.A. Akbas, P.K. Davies, Ordering-induced microstructures and microwave dielectric properties of the Ba(Mg1/3Nb2/3)O3–BaZrO3 system. J. Am. Ceram. Soc. 81, 670–676 (2018)

    Article  Google Scholar 

  8. M.S. Fu, X.Q. Liu, X.M. Chen, Y.M. Zeng, Effects of Mg substitution on microstructures and microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 perovskite ceramics. J. Am. Ceram. Soc. 93, 787–795 (2010)

    Article  CAS  Google Scholar 

  9. H. Dong, F. Shi, Effects of Synthesis temperatures on crystal structures and lattice vibration modes of (Ba0.3Sr0.7)[(Zn1-xMgx)1/3Nb2/3]O3 solid solutions. Metall. Mater. Trans. A 43, 5128–5139 (2012)

    Article  CAS  Google Scholar 

  10. P.K. Davies, R.S. Roth, Defect intergrowths in barium polytitanates, 1. Ba2Ti9O20. J. Solid State Chem. 71, 490–502 (1987)

    Article  CAS  Google Scholar 

  11. J.I. Yang, S. Nahm, C.H. Choi, H.J. Lee, H.M. Park, Microstructure and microwave dielectric properties of Ba(Zn1/3Ta2/3)O3 ceramics with ZrO2 addition. J. Eur. Ceram. Soc. 85, 165–168 (2010)

    Article  Google Scholar 

  12. F. Galasso, J. Pyle, Ordering in compounds of the A(B’0.33Ta0.67)O3 type. Inorg. Chem. 55, 482–484 (1963)

    Article  Google Scholar 

  13. F. Galasso, J. Pyle, Preparation and study of ordering in a(B’0.33Nb0.67)O3 perovskite-type compounds. J. Phys. Chem. 67, 1561–1562 (2002)

    Article  Google Scholar 

  14. S. Kawashima, M. Nishida, I. Ueda, H. Ouchi, Ba(Zn1/3Ta2/3)O3 ceramics with low dielectric loss at microwave frequencies. J. Am. Ceram. Soc. 66, 421–423 (2010)

    Article  Google Scholar 

  15. K. Matsumoto, T. Hiuga, K. Takada, H. Ichimura, Ba(Mg1/3Ta2/3)O3 ceramics with ultra-low loss at microwave frequencies, in IEEE International Symposium on the Applications of Ferroelectronics (1986), pp. 118–121

  16. P.K. Davies, A. Borisevich, M. Thirumal, Communicating with wireless perovskites: cation order and zinc volatilization. J. Eur. Ceram. Soc. 23, 2461–2466 (2003)

    Article  CAS  Google Scholar 

  17. H. Tamura, T. Konoike, Y. Sakabe, K. Wakino, Improved high-Q dielectric resonator with complex perovskite structure. J. Am. Ceram. Soc. 67, 59–61 (2010)

    Article  Google Scholar 

  18. P.P. Ma, L. Yi, X.M. Cheng, Microstructures and microwave dielectric properties of Ba((Co0.55Zn0.35Mg0.1)1/3Nb2/3)O3–BaZrO3 ceramics. J. Am. Ceram. Soc. 98, 520–527 (2015)

    Article  CAS  Google Scholar 

  19. H.H. Guo, D. Zhou, L.X. Pang, Z.M. Qi, Microwave dielectric properties of low firing temperature stable scheelite structured (Ca, Bi)(Mo, V)O4 solid solution ceramics for LTCC applications. J. Eur. Ceram. Soc. 39, 2365–2375 (2019)

    Article  CAS  Google Scholar 

  20. S.H. Risbud, Y.H. Han, Preface and historical perspective on spark plasma sintering. Scripta Mater. 69, 105–106 (2013)

    Article  CAS  Google Scholar 

  21. Y. Sun, K. Kulkarni, A.K. Sachdev, E.J. Lavernia, Synthesis of γ-TiAl by reactive spark plasma sintering of cryomilled Ti and Al powder blend: part II: effects of electric field and microstructure on sintering kinetics. Metal. Mater. Trans. A 45, 2759–2767 (2014)

    Article  CAS  Google Scholar 

  22. J.E. Garay, Current-activated, pressure-assisted densification of materials. Mater. Res. 40, 445–468 (2010)

    Article  CAS  Google Scholar 

  23. J. Bu, P.G. Jonsson, Z. Zhao, Dense and translucent BaZrxCe0.8-xY0.2O3-δ (x = 0.5, 0.6, 0.7) proton conductors prepared by spark plasma sintering. Scripta Mater. 107, 145–148 (2015)

    Article  CAS  Google Scholar 

  24. L. Cheng, S. Jiang, Q. Ma, Z. Shang, S. Liu, Sintering behavior and microwave properties of dense 0.7CaTiO3–0.3NdAlO3 ceramics with sub-micron sized grains by spark plasma sintering. Scripta Mater. 115, 80–83 (2016)

    Article  CAS  Google Scholar 

  25. F. Liu, S.J. Liu, X.J. Cui, L.J. Cheng, Ordered domains and microwave properties of sub-micron structured Ba(Zn1/3Ta2/3)O3 ceramics obtained by spark plasma sintering. Materials 12, 638–648 (2019)

    Article  CAS  Google Scholar 

  26. J. Feng, L.J. Cheng, Z. Li, S. Liu, Structure, B-site short-range ordering and dielectric properties of Ba(Zn1/3Ta2/3)O3 microwave ceramics with sub-micron sized grains by spark plasma sintering. Mater. Res. Exp. 4, 066302 (2017)

    Article  Google Scholar 

  27. B.G. Guillaume, C. Guizard, Spark plasma sintering of a commercially available granulated zirconia powder: I. Sintering path and hypotheses about the mechanism (s) controlling densification. Acta Mater. 55, 3493–3504 (2007)

    Article  Google Scholar 

  28. B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microw. Theory Tech. 8, 402–410 (2003)

    Article  Google Scholar 

  29. W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans. Microw. Theory Tech. 18, 476–485 (1970)

    Article  Google Scholar 

  30. I.M. Reaney, I. Qazi, W.E. Lee, Order-disorder behavior in Ba(Zn1/3Ta2/3)O3. J. Appl. Phys. 88, 6708–6714 (2000)

    Article  CAS  Google Scholar 

  31. L. Liu, A. Matusevich, C. Garg, N. Newman, The dominance of paramagnetic loss in microwave dielectric ceramics at cryogenic temperatures. Appl. Phys. Lett. 102, 049901 (2013)

    Article  Google Scholar 

  32. J. Sun, S. Liu, N. Newman, D.J. Smith, Atomic resolution transmission electron microscopy of the microstructure of ordered Ba(Cd1/3Ta2/3)O3 perovskite ceramics. J. Am. Ceram. Soc. 89, 1047–1052 (2010)

    Article  Google Scholar 

  33. J. Sun, S. Liu, N. Newman, M.R. Mccartney, D.J. Smith, Electron microscopy characterization of Ba(Cd1/3Ta2/3)O3 microwave dielectrics with boron additive. J. Mater. Res. 19, 1387–1391 (2004)

    Article  CAS  Google Scholar 

  34. F. Galasso, J. Pyle, Preparation and study of ordering in A(B0.33Nb0.67)O3 perovskite type compounds. J. Phy. Chem. 66, 131 (1982)

    Article  Google Scholar 

  35. P.P. Ma, Y. Lei, Q.L. **ao, L. Lei, M.C. **ang, Effects of Mg substitution on order/disorder transition, microstructure, and microwave dielectric characteristics of Ba[(Co0.6Zn0.4)1/3Nb2/3]O3 complex perovskite ceramics. J. Am. Ceram. Soc. 96, 1795–1800 (2013)

    Article  CAS  Google Scholar 

  36. X.M. Chen, D. Liu, R.Z. Hou, Z.Q. Liu, Microstructures and microwave dielectric characteristics of Ca(Zn1/3Nb2/3)O3 complex perovskite cermics. J. Am. Ceram. Soc. 87, 2208–2212 (2004)

    Article  CAS  Google Scholar 

  37. J.D. Breeze, J.M. Perkins, D.W. Mccomb, N.M. Alford, Do grain boundaries affect microwave dielectric loss in oxides? J. Am. Ceram. Soc. 92, 671–674 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financial supported by Shenzhen Technical Innovation and Tackling Program (Grant Nos. 20170410221235842) and the State Key Laboratory for Powder Metallurgy Foundation. The use of facilities in the Institute for Materials Microstructure and the State Key Laboratory for Powder Metallurgy at Central South University is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-jun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Cheng, Lj., Li, H. et al. Ordering-induced domains in sub-micron-sized Ba(Zn1/3Ta2/3)O3–BaZrO3 microwave ceramics. J Mater Sci: Mater Electron 32, 26126–26136 (2021). https://doi.org/10.1007/s10854-021-06341-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06341-3

Navigation