Log in

Nickel oxide-1D/2D carbon nanostructure hybrid as efficient field emitters

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sharp one-dimensional (1D) and two-dimensional (2D) structures are required for stable and efficient field emission. 1D metal oxide and 1D carbonaceous nanostructure material have been used widely for exciting field emission applications. On the other hand, planar, continuous 2D nanostructures have been less explored, as most often, they offer inefficient field emitters, having high turn-on field and low emission current density. A combination of 1D and 2D nanostructures is expected to improve field emission properties. In the present study, nickel oxide nanostructures were considered as 1D nanostructures, which were synthesized on cleaned, polished, nickel foil substrate by wet chemical treatment through the nano-seed mechanism. Pyramidal shape nanostructures of NiO were found onto nickel substrate. 1D nanostructure, NiO nanostructure, does not show any field emission response. Further, graphene oxide (GO) was used as the 2D nanostructure.) While nickel oxide nanostructure and graphene oxide individually demonstrated very low emission properties, hybrid of these materials show modified surface topography and enhanced field emission properties. The field emission response of graphene oxide on Ni foil shows 6.7 V/μm turn-on field and maximum current density of 28 µA/cm2, whereas graphene oxide on NiO nanostructure has enhanced field emission response. In the case of NiO–GO, the turn-on field and maximum current are 5 V/μm and 173 µA/cm2, respectively. Field emission properties are enhanced further with the reduction of the NiO–GO hybrid and depositing CNT of NiO. The maximum current density of 3.7 mA/cm2was observed for the NiO–CNT hybrid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Gomer, Field Ionization and Field Emission (University Press, Cambridge, MA, Harvard, 1961).

    Google Scholar 

  2. D. Ye, S. Moussa, J.D. Ferguson, A.A. Baski, M.S. El-Shall, Highly efficient electron field emission from graphene oxide sheets supported by nickel nanotip arrays. Nano Lett. 12, 1265–1268 (2012)

    Article  CAS  Google Scholar 

  3. C.A. Spindt, I. Brodie, L. Humphrey, E. Westerberg, Physical properties of thin-film field emission cathodes with molybdenum cones. J. Appl. Phys. 47, 5248–5263 (1976)

    Article  CAS  Google Scholar 

  4. N. Lee, D. Chung, I. Han, J. Kang, Y. Choi, H. Kim et al., Application of carbon nanotubes to field emission displays. Diam. Relat. Mater. 10, 265–270 (2001)

    Article  CAS  Google Scholar 

  5. Z. Liu, G. Yang, Y.Z. Lee, D. Bordelon, J. Lu, O. Zhou, Carbon nanotube based microfocus field emission x-ray source for microcomputed tomography. Appl. Phys. Lett. 89, 103111 (2006)

    Article  Google Scholar 

  6. W. Milne, K. Teo, E. Minoux, O. Groening, L. Gangloff, L. Hudanski et al., Aligned carbon nanotubes/fibers for applications in vacuum microwave amplifiers. J. Vac. Sci. Technol. B 24, 345–348 (2006)

    Article  CAS  Google Scholar 

  7. P.A. Sohi, M. Kahrizi, Low-voltage gas field ionization tunneling sensor using silicon nanostructures. IEEE Sens. J. 18, 6092–6096 (2018)

    Article  CAS  Google Scholar 

  8. A. Feist, N. Bach, N.R. da Silva, T. Danz, M. Möller, K.E. Priebe et al., Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam. Ultramicroscopy 176, 63–73 (2017)

    Article  CAS  Google Scholar 

  9. S.-H. Yang, N.-C. Hsu, Electron emission enhancement of long hybrid emitters prepared using ZnO nanowires decorated with Zn nanoflakes. Appl. Surf. Sci. 433, 639–646 (2018)

    Article  CAS  Google Scholar 

  10. A.N. Banerjee, Enhanced field-emission properties of Sol–Gel-derived nanostructured SnO2: F thin film for vacuum microelectronics. Arab. J. Sci. Eng. 43, 3815–3821 (2018)

    Article  CAS  Google Scholar 

  11. M. Liu, W. Fu, T. Li, Y. Wang, Excellent field emission properties of vanadium oxide nanoemitters in air. in 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO) (IEEE, 2017), pp. 351–354

  12. V. Jain, A.K. Tripathi, K. Saini, D. Deva, I. Lahiri, Copper nanowire–carbon nanotube hierarchical structure for enhanced field emission. J. Mater. Sci. 29, 13620–13630 (2018)

    CAS  Google Scholar 

  13. Z. Zheng, Y. Chen, Z. Shen, J. Ma, C.-H. Sow, W. Huang et al., Ultra-sharp α-Fe 2 O 3 nanoflakes: growth mechanism and field-emission. Appl. Phys. A 89, 115–119 (2007)

    Article  CAS  Google Scholar 

  14. L. Li, Y. Zhang, X. Fang, T. Zhai, M. Liao, X. Sun et al., WO3 nanowires on carbon papers: electronic transport, improved ultraviolet-light photodetectors and excellent field emitters. J. Mater. Chem. 21, 6525–6530 (2011)

    Article  CAS  Google Scholar 

  15. T. Yu, Y. Zhu, X. Xu, Z. Shen, P. Chen, C.T. Lim et al., Controlled growth and field-emission properties of cobalt oxide nanowalls. Adv. Mater. 17, 1595–1599 (2005)

    Article  CAS  Google Scholar 

  16. A. Venter, J.R. Botha, Optical and electrical properties of NiO for possible dielectric applications. S. Afr. J. Sci. 107, 1–6 (2011)

    Article  Google Scholar 

  17. I. Hotovy, J. Huran, L. Spiess, S. Hascik, V. Rehacek, Preparation of nickel oxide thin films for gas sensors applications. Sens. Actuators, B Chem. 57, 147–152 (1999)

    Article  CAS  Google Scholar 

  18. A. Faes, Q. Jeangros, J.B. Wagner, T.W. Hansen, J. Van Herle, A. Brisse et al., In situ reduction and oxidation of nickel from solid oxide fuel cells in a transmission electron microscope. ECS Trans. 25, 1985–1992 (2009)

    Article  CAS  Google Scholar 

  19. H. Pang, Q. Lu, Y. Zhang, Y. Li, F. Gao, Selective synthesis of nickel oxide nanowires and length effect on their electrochemical properties. Nanoscale 2, 920–922 (2010)

    Article  CAS  Google Scholar 

  20. K. Ufert, Non-volatile, resistive memory cell based on metal oxide nanoparticles, process for manufacturing the same and memory cell arrangement of the same. U.S. Patent US7297975B2 (2007)

  21. F.I. Dar, K.R. Moonoosawmy, M. Es-Souni, Morphology and property control of NiO nanostructures for supercapacitor applications. Nanoscale Res. Lett. 8, 363 (2013)

    Article  Google Scholar 

  22. D.-W. Wang, F. Li, H.-M. Cheng, Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. J. Power Sour. 185, 1563–1568 (2008)

    Article  CAS  Google Scholar 

  23. N. Das, S. Santra, D. Banerjee, G. Das, K. Chattopadhyay, NiO nanosteps on Ni: wide band gap p-type nanostructure for efficient cold cathode and magnetically separable photocatalyst. Mater. Res. Express 1, 025902 (2014)

    Article  CAS  Google Scholar 

  24. S.Mishra, P. Yogi, S.K. Saxena, J. Jayabalan, P. Sagdeo, R. Kumar, Three-fold constructive perturbation for significant enhancement in field emission from nickel oxide nano-thorn. ar**v preprint Accessed https://arxiv.org/abs/1705.07715v1 (2017)

  25. G. Jayalakshmi, K. Saravanan, B. Panigrahi, P. Magudapathy, High efficient electron field emission from rGO conformally coated NiO nanoflakes architecture. J. Mater. Sci.: Mater. Electron. 29, 14689–14696 (2018)

    CAS  Google Scholar 

  26. V. Chouhan, T. Noguchi, S. Kato, Field emission from optimized structure of carbon nanotube field emitter array. J. Appl. Phys. 119, 134303 (2016)

    Article  Google Scholar 

  27. S. Wang, J. Wang, P. Miraldo, M. Zhu, R. Outlaw, K. Hou et al., High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices. Appl. Phys. Lett. 89, 183103 (2006)

    Article  Google Scholar 

  28. X. Guo, Y. Wang, X. Wang, X. **, Y. Gu, Q. Liu et al., Nitrogen-doped nanodiamond films grown just by heating solid precursor thin layers for field emission application. J. Phys. D 53, 015101 (2019)

    Article  Google Scholar 

  29. M.L. Terranova, S. Orlanducci, M. Rossi, E. Tamburri, Nanodiamonds for field emission: state of the art. Nanoscale 7, 5094–5114 (2015)

    Article  CAS  Google Scholar 

  30. H. Yamaguchi, K. Murakami, G. Eda, T. Fujita, P. Guan, W. Wang et al., Field emission from atomically thin edges of reduced graphene oxide. ACS Nano 5, 4945–4952 (2011)

    Article  CAS  Google Scholar 

  31. G. Kaur, R. Kumar, I. Lahiri, Field electron emission from protruded GO and rGO sheets on CuO and Cu nanorods. Phys. E. 112, 10–18 (2019)

    Article  CAS  Google Scholar 

  32. S. Mishra, P. Yogi, S.K. Saxena, J. Jayabalan, P. Behera, P. Sagdeo et al., Significant field emission enhancement in ultrathin nano-thorn covered NiO nano-petals. J. Mater. Chem. C 5, 9611–9618 (2017)

    Article  CAS  Google Scholar 

  33. E. Le Shim, E. Yoo, C. Jung Kang, Y. ** Choi, J. Bae, S. Bum Lee et al., Facile fabrication of scalable patterned nickel nanocone arrays for field emission applications. J. Vac. Sci. Technol. B 31, 02B104 (2013)

    Article  Google Scholar 

  34. W.E. Mahmoud, T. Al-Harbi, Synthesis and field emission properties of nickel oxide nanoplatelets prepared by simple novel technique. Superlattices Microstruct. 50, 21–25 (2011)

    Article  CAS  Google Scholar 

  35. R. Kumar, R.M. Kumar, D. Lahiri, I. Lahiri, Thermally reduced graphene oxide film on soda lime glass as transparent conducting electrode. Surf. Coat. Technol. 309, 931–937 (2017)

    Article  CAS  Google Scholar 

  36. K. Zhang, C. Rossi, P. Alphonse, C. Tenailleau, Synthesis of NiO nanowalls by thermal treatment of Ni film deposited onto a stainless steel substrate. Nanotechnology 19, 155605 (2008)

    Article  Google Scholar 

  37. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner et al., Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47, 145–152 (2009)

    Article  CAS  Google Scholar 

  38. N. Mironova-Ulmane, A. Kuzmin, I. Sildos, L. Puust, J. Grabis, Magnon and phonon excitations in nanosized NiO. Latv. J. Phys. Tech. Sci. 56, 61–72 (2019)

    CAS  Google Scholar 

  39. G. Zhou, D.-W. Wang, L.-C. Yin, N. Li, F. Li, H.-M. Cheng, Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6, 3214–3223 (2012)

    Article  CAS  Google Scholar 

  40. M. **g, C. Wang, H. Hou, Z. Wu, Y. Zhu, Y. Yang et al., Ultrafine nickel oxide quantum dots enbedded with few-layer exfoliative graphene for an asymmetric supercapacitor: Enhanced capacitances by alternating voltage. J. Power Sour. 298, 241–248 (2015)

    Article  CAS  Google Scholar 

  41. A. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. of Phys. Chem. C 115, 17009–17019 (2011)

    Article  CAS  Google Scholar 

  42. M.A. Peck, M.A. Langell, Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chem. Mater. 24, 4483–4490 (2012)

    Article  CAS  Google Scholar 

  43. R.A. Patil, C.-P. Chang, R.S. Devan, Y. Liou, Y.-R. Ma, Impact of nanosize on supercapacitance: study of 1D nanorods and 2D thin-films of nickel oxide. ACS Appl. Mater. Interfaces 8, 9872–9880 (2016)

    Article  CAS  Google Scholar 

  44. J.R. Manders, S.W. Tsang, M.J. Hartel, T.H. Lai, S. Chen, C.M. Amb et al., Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv. Func. Mater. 23, 2993–3001 (2013)

    Article  CAS  Google Scholar 

  45. H.L. Skriver, N. Rosengaard, Surface energy and work function of elemental metals. Phys. Rev. B 46, 7157 (1992)

    Article  CAS  Google Scholar 

  46. C. An, Y. Wang, Y. Huang, Y. Xu, L. Jiao, H. Yuan, Porous NiCo2O4 nanostructures for high performance supercapacitors via a microemulsion technique. Nano Energy 10, 125–134 (2014)

    Article  CAS  Google Scholar 

  47. L. Sygellou, G. Paterakis, C. Galiotis, D. Tasis, Work function tuning of reduced graphene oxide thin films. J. Phys. Chem. C 120, 281–290 (2016)

    Article  CAS  Google Scholar 

  48. M. Ebrahimi, M. Qorbani, A. Bayat, A. Zavarian, A. Moshfegh, Correlation between surface stochastic parameters and field emission property of NiO nanorods. J. Phys. D 47, 115302 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This research work was partially funded by Science and Engineering Research Board (SERB), India (grant no. EMR/2016/001282).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Lahiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, P.C., Pulagara, N.V., Arya, J. et al. Nickel oxide-1D/2D carbon nanostructure hybrid as efficient field emitters. J Mater Sci: Mater Electron 32, 16761–16774 (2021). https://doi.org/10.1007/s10854-021-06234-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06234-5

Navigation