Log in

Dynamic response of electrical, dielectric and magnetic properties of La-substituted Ni-Cu-Cd bulk ceramics with structural rietveld refinement

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bulk dense ceramics are needed in many electronic applications instead of powder with grain in the nanometric range that is the prime objectives of the present research. In this paper, Ni0.5Cu0.2Cd0.3Fe2−xLaxO4 ceramics were prepared sintered at 900 °C from Sol–gel synthesized nanocrystalline ferrites. Sintering of nanocrystalline powders has been done to obtain dense ceramics which in turn affects the structural, electrical, dielectric and magnetic properties of these materials. Structural characterizations were performed by the X-ray diffraction (XRD) technique. XRD data were analyzed by the Rietveld Refinement method with the Fullprof suite programme. By the implementation of data, structures have been analyzed and it is observed goodness of fitting as well as different parameters which include crystallite size, cation distribution, crystal structure using Vesta, electron density and Maximum Entropy Map has been obtained for each of every set. Furthermore, densification, dielectric properties, initial permeability, ac conductivity, etc. have been done with La3+ substitution. The influence of La3+ substitution on the magnetic permeability curve of the sample was studied at room temperature. With the arisen frequency the real part of permeability remains almost constant and shows a better relative quality factor. Enhancement of initial permeability of dense ceramics was observed with the substitution of La3+. It is depicted that the dielectric loss tangent reduces remarkably with increasing La3+ content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S.S. Ata-Allah, M.K. Fayek, H.A. Sayed, M. Yehia, Effect of Zn do** on temperature and frequency dependence of dielectric permittivity and dielectric relaxation for synthesized tetragonal copper-gallium ferrite. Mater. Chem. Phys. 92(1), 278–285 (2005). https://doi.org/10.1016/j.matchemphys.2005.01.024

    Article  CAS  Google Scholar 

  2. M. Qin, L. Zhang, X. Zhao, H. Wu, Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application. Adv. Sci. 2004640, 1–14 (2021). https://doi.org/10.1002/advs.202004640

    Article  CAS  Google Scholar 

  3. P.K. Roy, J. Bera, Characterization of nanocrystalline NiCuZn ferrite powders synthesized by sol-gel auto-combustion method. J. Mater. Process. Technol. 197(1–3), 279–283 (2008). https://doi.org/10.1016/j.jmatprotec.2007.06.027

    Article  CAS  Google Scholar 

  4. G.J. Redhammer, G. Tippelt, “Crystal structure of spinel-type Li0.64Fe2.15Ge0.21O4”, Acta Crystallographica Section E: Crystallographic. Communications 72, 505–508 (2016). https://doi.org/10.1107/S205698901600414X

    Article  CAS  Google Scholar 

  5. A. Hakimyfard, S. Mohammadi, ZnFe 2 O 4 and ZnO-Zn 1–x M x Fe 2 O 4+δ (M = Sm 3+, Eu 3+ and Ho 3+ ): Synthesis, physical properties and high performance visible light induced photocatalytic degradation of malachite green. Adv. Powder Technol. 30(6), 1257–1268 (2019). https://doi.org/10.1016/j.apt.2019.04.005

    Article  CAS  Google Scholar 

  6. H. Kavas, A. Baykal, M.S. Toprak, Y. Köseoǧlu, M. Sertkol, B. Aktaş, Cation distribution and magnetic properties of Zn doped NiFe2O4 nanoparticles synthesized by PEG-assisted hydrothermal route. J. Alloy. Compd. 479(1–2), 49–55 (2009). https://doi.org/10.1016/j.jallcom.2009.01.014

    Article  CAS  Google Scholar 

  7. Y. Tajima, Z. Nagasawa, I. Tanabe, H. Yamada, K. Kusaba, J. Tadano, An Improved Method for the Seroty** of Free Coagulase from Staphylococcus aureus. Microbiol. Immunol. 36(12), 1233–1237 (1992). https://doi.org/10.1111/j.1348-0421.1992.tb02127.x

    Article  CAS  Google Scholar 

  8. S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya, V.N. Singh, Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J. Mol. Struct. 1076, 55–62 (2014). https://doi.org/10.1016/j.molstruc.2014.07.048

    Article  CAS  Google Scholar 

  9. S.T. Assar, H.F. Abosheiasha, A.R. El Sayed, Effect of γ-rays irradiation on the structural, magnetic, and electrical properties of Mg–Cu–Zn and Ni–Cu–Zn ferrites. J. Magn. Magn. Mater. 421, 355–367 (2017). https://doi.org/10.1016/j.jmmm.2016.08.028

    Article  CAS  Google Scholar 

  10. J. **g, L. Liangchao, X. Feng, Structural analysis and magnetic properties of Gd-doped Li-Ni ferrites prepared using rheological phase reaction method. J. Rare Earths 25(1), 79–83 (2007). https://doi.org/10.1016/S1002-0721(07)60049-0

    Article  Google Scholar 

  11. M. Arifuzzaman, M.B. Hossen, M. Harun-Or-Rashid, M.L. Rahman, Structural and magnetic properties of nanocrystalline Ni0.7-xCuxCd0.3Fe2O4 prepared through Sol-gel method. Mater Charact 171, 110810 (2021). https://doi.org/10.1016/j.matchar.2020.110810

    Article  CAS  Google Scholar 

  12. Y. Wang, X. Wu, W. Zhang, W. Chen, Synthesis and electromagnetic properties of La-doped Ni-Zn ferrites. J. Magn. Magn. Mater. 398, 90–95 (2016). https://doi.org/10.1016/j.jmmm.2015.09.044

    Article  CAS  Google Scholar 

  13. H.J.J. Jonker, A.C.C. Coolen, Unsupervised dynamic learning in layered neural networks. J. Phys. A: Math. Gen. 24(17), 4219–4234 (1991). https://doi.org/10.1088/0305-4470/24/17/032

    Article  Google Scholar 

  14. J. Dantas, E. Leal, A.B. Mapossa, D.R. Cornejo, A.C.F.M. Costa, Magnetic nanocatalysts of Ni0.5Zn0.5Fe2O4 doped with Cu and performance evaluation in transesterification reaction for biodiesel production. Fuel 191, 463–471 (2017). https://doi.org/10.1016/j.fuel.2016.11.107

    Article  CAS  Google Scholar 

  15. M.J. Iqbal, M.R. Siddiquah, Electrical and magnetic properties of chromium-substituted cobalt ferrite nanomaterials. J. Alloy. Compd. 453(1–2), 513–518 (2008). https://doi.org/10.1016/j.jallcom.2007.06.105

    Article  CAS  Google Scholar 

  16. X. Batlle et al., Magnetic nanoparticles with bulklike properties (invited). J. Appl. Phys. 109(7), 1–7 (2011). https://doi.org/10.1063/1.3559504

    Article  CAS  Google Scholar 

  17. M.A. Gabal, A.M. Asiri, Y.M. Alangari, On the structural and magnetic properties of La-substituted NiCuZn ferrites prepared using egg-white. Ceram. Int. 37(7), 2625–2630 (2011). https://doi.org/10.1016/j.ceramint.2011.04.007

    Article  CAS  Google Scholar 

  18. A.M. Bolarín-Miró, F. Sánchez-De Jesús, C.A. Cortés-Escobedo, R. Valenzuela, S. Ammar, Structure and magnetic properties of GdxY1-xFeO3 obtained by mechanosynthesis. J. Alloys Compd. 586(1), 90–94 (2014). https://doi.org/10.1016/j.jallcom.2013.04.029

    Article  CAS  Google Scholar 

  19. M.M. Hossen, M.B. Hossen, Structural, electrical and magnetic properties of Ni0.5Cu0.2Cd0.3LaxFe2-xO4 nano-ferrites due to lanthanum do** in the place of trivalent iron. Physica B 585, 412116 (2020). https://doi.org/10.1016/j.physb.2020.412116

    Article  CAS  Google Scholar 

  20. R. Valenzuela, T. Gaudisson, S. Ammar, Severe reduction of Ni-Zn ferrites during consolidation by Spark Plasma Sintering (SPS). J. Magn. Magn. Mater. 400, 311–314 (2016). https://doi.org/10.1016/j.jmmm.2015.07.044

    Article  CAS  Google Scholar 

  21. R. Breitwieser, U. Acevedo, S. Ammar, R. Valenzuela, Ferrite nanostructures consolidated by spark plasma sintering (SPS), in Nanostructured Materials—Fabrication to Applications. ed. by M.S. Seehra (In Tech, Singapore, 2017)

    Google Scholar 

  22. B.C. Das, F. Alam, A.K.M.H. Akther, The crystallographic, magnetic, and electrical properties of Gd3+-substituted Ni–Cu–Zn mixed ferrites. J. Phys. Chem. Solids 142, 109433 (2020). https://doi.org/10.1016/j.jpcs.2020.109433

    Article  CAS  Google Scholar 

  23. G.W. Stinton, J.S.O. Evans, Parametric Rietveld refinement. J. Appl. Crystallogr. 40(1), 87–95 (2007). https://doi.org/10.1107/S0021889806043275

    Article  CAS  Google Scholar 

  24. K. Shankland, I. Facility, Global Reitveld refinement. J. Res. Nat. Inst. Stand. Technol. 109(1), 143–154 (2004)

    Article  CAS  Google Scholar 

  25. L. Kumar, P. Kumar, A. Narayan, M. Kar, Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite. Int. Nano Lett. 3(1), 1–12 (2013). https://doi.org/10.1186/2228-5326-3-8

    Article  CAS  Google Scholar 

  26. L. Kumar, M. Kar, Effect of Ho3+ substitution on the cation distribution, crystal structure and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite. J. Exp. Nanosci. 9(4), 362–374 (2014). https://doi.org/10.1080/17458080.2012.661474

    Article  CAS  Google Scholar 

  27. H. Bhoi, P. Joshi, K. Punia, G. Lal, S. Kumar, Synthesis and rietveld refinement of MgO nanoparticles, 3Rd International Conference on Condensed Matter and Applied Physics (Icc-2019), vol. 2220, no. May, p. 020109, 2020, doi: https://doi.org/10.1063/5.0001269.

  28. R. Verma, S.N. Kane, P. Tiwari, F. Mazaleyrat, CD content dependent structural and magnetic properties of Cd-Ni nano ferrite. AIP Conf. Proc. 2142(August), 1–5 (2019). https://doi.org/10.1063/1.5122582

    Article  CAS  Google Scholar 

  29. Y. Su, D. Lu, S. Wang, Characterization and Rietveld refinements of new dense ceramics Ba3-xSrxTb3-xCexO9 (x = 1 and 1.5) perovskites. Powder Diffr. 35(1), 23–30 (2020). https://doi.org/10.1017/S0885715620000056

    Article  CAS  Google Scholar 

  30. H.S.C. O’Neill, A. Navrotsky, Simple spinels: crystallographic parameters, cation radii, lattice energies, and cation distribution. Am. Miner. 68(1–2), 181–194 (1983)

    Google Scholar 

  31. R.V. Kumar et al., Cation distributions and magnetism of Al-substituted CoFe2O4—NiFe2O4 solid solutions synthesized by sol-gel auto-combustion method. Ceram. Int. 44(17), 20708–20715 (2018). https://doi.org/10.1016/j.ceramint.2018.08.065

    Article  CAS  Google Scholar 

  32. E.M. Rivera-Mũoz, L. Bucio, Rietveld refinement of Y2GeO5. Acta Crystallogr Sect E (2009). https://doi.org/10.1107/S1600536809026579

    Article  Google Scholar 

  33. M.B. Hossen, A.K.M.A. Hossain, Structural and dynamic electromagnetic properties of Ni0.27Cu0.10Zn0.63AlxFe2-xO4. J. Magn. Magn. Mater. 387, 24–36 (2015). https://doi.org/10.1016/j.jmmm.2015.03.083

    Article  CAS  Google Scholar 

  34. G.M. Santos et al., Electron density distribution and electronic structure as tools to study the origin of ferroic states in ferroelectric and magnetic materials. Ferroelectrics 500(1), 26–36 (2016). https://doi.org/10.1080/00150193.2016.1215754

    Article  CAS  Google Scholar 

  35. R. Saravanan, Y. Ono, M. Isshiki, Electron density distribution in GaAs using MEM. J. Phys. Chem. Solids 64, 51–58 (2003)

    Article  CAS  Google Scholar 

  36. A. Bagum, M.B. Hossen, F.U.Z. Chowdhury, Complex impedance and electric modulus studies of Al substituted Co0.4Cu0.2Zn0.4Al xFe2-xO4 ferrites prepared by auto combustion technique. Ferroelectrics 494, 19–32 (2016). https://doi.org/10.1080/00150193.2016.1137467

  37. H. Anwar, A. Maqsood, Structural, magnetic and electrical properties of Cu substituted Mn-Zn soft nanoferrites. J. Supercond. Novel Magn. 25(6), 1913–1920 (2012). https://doi.org/10.1007/s10948-012-1511-7

    Article  CAS  Google Scholar 

  38. M.B. Hossen, M.S. Alam, N.M. Eman, N.J. Shirin, Thermal response of dielectric, impedance and modulus spectroscopy study of NCZA bulk ceramics. Phase Transitions 92(8), 719–729 (2019). https://doi.org/10.1080/01411594.2019.1632849

    Article  CAS  Google Scholar 

  39. M. Arifuzzaman, M.B. Hossen, J.D. Afroze, M.J. Abden, Structural and electrical properties of Cu substituted Ni–Cd nanoferrites for microwave applications. Physica B (2020). https://doi.org/10.1016/j.physb.2020.412170

    Article  Google Scholar 

  40. S.M. Ramay, S.A. Siddiqi, S. Atiq, M.S. Awan, S. Riaza, Structural, magnetic, and electrical properties of Al3+ substituted CuZn-ferrites, Chinese J. Chem. Phys. 23, 591–595 (2010). https://doi.org/10.1088/1674-0068/23/05/591-595

  41. M.M. Hossen, M.B. Hossen, Study of structural and electrical properties along with magnetic properties of Ni0.5−xMgxCu0.2Cd0.3Fe2O4 nanoferrites synthesized by employing sol–gel auto-combustion method. J. Mater. Sci.: Mater. Electron. 30(23), 20801–20815 (2019). https://doi.org/10.1007/s10854-019-02447-x

    Article  CAS  Google Scholar 

  42. V. Gurevich, A. Tagantsev, Intrinsic dielectric loss in crystals: low temperatures. Sov. Phys. JETP 64, 142–151 (1986)

    Google Scholar 

  43. K. Mujasam Batoo, Study of dielectric and impedance properties of Mn ferrites. Physica B 406(3), 382–387 (2011). https://doi.org/10.1016/j.physb.2010.10.075

    Article  CAS  Google Scholar 

  44. M. Hashim et al., Structural, magnetic and electrical properties of Al3+ substituted Ni-Zn ferrite nanoparticles. J. Alloy. Compd. 511(1), 107–114 (2012). https://doi.org/10.1016/j.jallcom.2011.08.096

    Article  CAS  Google Scholar 

  45. M. Arifuzzaman, M.B. Hossen, Effect of Cu substitution on structural and electric transport properties of Ni-Cd nanoferrites. Results Phys. 16, 102824 (2020). https://doi.org/10.1016/j.rinp.2019.102824

    Article  Google Scholar 

  46. Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, G. Zou, The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Mater. Lett. 60(29–30), 3548–3552 (2006). https://doi.org/10.1016/j.matlet.2006.03.055

    Article  CAS  Google Scholar 

  47. B.J.T.S. Irvine, D.C. Sinclair, A.R. West, Electroceramics characterisation by impedance sepctroscopy.pdf. Archives francaise de pediatre 42(1), 575–576 (1985)

    Google Scholar 

  48. T. Prakash, K.P. Prasad, R. Kavitha, S. Ramasamy, B.S. Murty, Dielectric relaxation studies of nanocrystalline CuAlO2 using modulus formalism. J. Appl. Phys. (2007). https://doi.org/10.1063/1.2815633

    Article  Google Scholar 

  49. M. Irfan, M.U. Islam, I. Ali, M.A. Iqbal, N. Karamat, H.M. Khan, Effect of Y2O3 do** on the electrical transport properties of Sr2MnNiFe12O22 Y-type hexaferrite. Curr. Appl. Phys. 14(1), 112–117 (2014). https://doi.org/10.1016/j.cap.2013.10.010

    Article  Google Scholar 

  50. S.L. Blum, Microstructure and Properties of Ferrites. J. Am. Ceram. Soc. 41(11), 489–493 (1958). https://doi.org/10.1111/j.1151-2916.1958.tb12902.x

    Article  CAS  Google Scholar 

  51. A. Bagum, M.B. Hossen, F.U.Z. Chowdhury, Complex impedance and electric modulus studies of Al substituted Co0.4Cu0.2Zn0.4Al xFe2-xO4 ferrites prepared by auto combustion technique. Ferroelectrics 494(1), 19–32 (2016). https://doi.org/10.1080/00150193.2016.1137467

    Article  CAS  Google Scholar 

  52. M. Ram, S. Chakrabarti, Dielectric and modulus behavior of LiFe1/2Ni1/2VO4 ceramics. J. Phys. Chem. Solids 69(4), 905–912 (2008). https://doi.org/10.1016/j.jpcs.2007.10.008

    Article  CAS  Google Scholar 

  53. T. Nakamura, Low-temperature sintering of Ni-Zn-Cu ferrite and its permeability spectra. J. Magn. Magn. Mater. 168(3), 285–291 (1997). https://doi.org/10.1016/S0304-8853(96)00709-3

    Article  CAS  Google Scholar 

  54. C. Sujatha, K.V. Reddy, K.S. Babu, A.R. Reddy, K.H. Rao, Effects of heat treatment conditions on the structural and magnetic properties of MgCuZn nano ferrite. Ceram. Int. 38(7), 5813–5820 (2012). https://doi.org/10.1016/j.ceramint.2012.04.029

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Belal Hossen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper. Also, there is no conflict of interest for this submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, M.F., Hossen, M.B. Dynamic response of electrical, dielectric and magnetic properties of La-substituted Ni-Cu-Cd bulk ceramics with structural rietveld refinement. J Mater Sci: Mater Electron 32, 14248–14273 (2021). https://doi.org/10.1007/s10854-021-05988-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05988-2

Navigation