Log in

SiN-based platform toward monolithic integration in photonics and electronics

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work presents a review of silicon nitride applications in Si photonics and electronics. As the one of the prominent photonics platform, it owes excellent characteristics in optical communication that is complimentary in performance to the silicon-on-insulator (SOI) photonics. In addition, silicon nitride plays also an important role in realizing germanium laser because of its unique behavior in tuning strain. The induced strain varies from high tensile to compressive stress. The induced strain improves the carrier transport in the channel of nFETs or pFETs. The strain provides also the possibility in adjusting the bandstructure of germanium and converts the germanium from indirect-to-direct band-gap material which is fundamental in obtain germanium laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.H. Smith, S. Montague, J.J. Sniegowski et al., Embedded micromechanical devices for the monolithic integration of MEMS with CMOS, in: Proceedings of the IEEE International Conference on Electron Device Meeting, Technical Digest, Washington, DC, pp. 609–612 (1995).

  2. H.H. Radamson, L. Thylen et al., Monolithic Nanoscale Photonics-Electronics Integration in Silicon and Other Group IV Elements (Academic Press, London, 2014).

    Google Scholar 

  3. H.H. Radamson, J. Luo, E. Simeon, Z. Chao, Past Present and Future of CMOS (Elsevier, Duxford, 2018).

    Google Scholar 

  4. A. Kshirsagar, P. Nyaupane, Deposition and characterization of low temperature silicon nitride films deposited by inductively coupled plasma CVD. Appl.Surf. Sci. 257, 5052–5058 (2011)

    Article  CAS  Google Scholar 

  5. H.F. Sterling, R.C.G. Swann. Solid State Electronics, 8: 653(1965).

  6. P.J. French, P.M. Sarro, R. Mallée, E.J.M. Fakkeldij, R.F. Wolffenbuttel, Optimization of a low-stress silicon nitride process for surface-micromachining applications. Sens. Actuators A 58, 149 (1997)

    Article  CAS  Google Scholar 

  7. D.J. Blumenthal. et al. Silicon nitride in silicon photonics. Proceedings of the IEEE,1–23 (2018).

  8. R.J. **e, H.T. Hintzen, Optical properties of (oxy) nitride materials: a review. J. Am. Ceram. Soc. 96, 665–687 (2013)

    Article  CAS  Google Scholar 

  9. J. Kim, J. Park et al., Double antireflection coating layer with silicon nitride and silicon oxide for crystalline silicon solar cell. J. Electroceram. 30, 41–45 (2012)

    Article  CAS  Google Scholar 

  10. W. Liao, X. Zeng, X. Wen, X. Chen, W. Wang, Annealing and excitation dependent photoluminescence of Si rich Silicon nitride films with Si quantum dots. Vacuum 121, 147–151 (2015)

    Article  CAS  Google Scholar 

  11. H.H. Radamson, Y. Zhang, X. He, The challenges of advanced CMOS process from 2D to 2D. Appl. Sci.-Basel 1047, 1–32 (2017)

    Google Scholar 

  12. H.H. Radamson, X. He, Q. Zhang, Miniaturization of CMOS. Micromach. Basel 10, 293 (2019)

    Article  Google Scholar 

  13. A. Gupta, C. Gupta, A.K. Bansal, A. Dixit, Stressor efficacy and mobility enhancement in N-channel nanowire FETs. Proc. IEEE 106, 2209–2231 (2018)

    Google Scholar 

  14. P.P. Absil et al., Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/Os. Opt. Express 23, 9369–9378 (2015)

    Article  CAS  Google Scholar 

  15. M. Smit, K. Williams, Progress in InP-based photonic integration. in Proceeding of Frontiers Opt., FW5B.4 (2015).

  16. R. Nagarajan et al., InP photonic integrated circuits. IEEE J. Sel. Topics Quantum Electron. 16(5), 1113–1125 (2010)

    Article  CAS  Google Scholar 

  17. A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J.S. Levy, M. Lipson, K. Bergman, Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors. ACM J. Emerging Technol. Comput. Syst. 7(2), 1–25 (2011)

    Article  Google Scholar 

  18. J.K.S. Poon, W.D. Sacher, Y. Huang, G.-Q. Lo, Multilayer silicon nitride-on-silicon integrated photonic platforms and devices. J. Lightwave Technol. 33(4), 901–910 (2015)

    Article  CAS  Google Scholar 

  19. R.M. de Ridder et al., Silicon oxynitride planar waveguiding structures for application in optical communication. IEEE J. Select. Top. Quant. Electron. 4(6), 930–937 (1998)

    Article  Google Scholar 

  20. A. Rahim et al., Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits. J. Light. Technol. 35(4), 639–649 (2017)

    Article  CAS  Google Scholar 

  21. M. Porcel et al., Silicon nitride photonic integration for visible light applications. Opt. Laser Technol. 112, 299–306 (2019)

    Article  CAS  Google Scholar 

  22. P. Muñoz, G. Micó, L.A. Bru et al., Silicon nitride photonic integration platforms for visible near-infrared and mid-infrared applications sensors. Sensor 17(9), 2088 (2017)

    Article  CAS  Google Scholar 

  23. J.K.S. Poon et al., Integrated photonic devices and circuits in multilayer silicon nitride-on-silicon platforms, Optical Society of America, Th3F.1 (2015).

  24. S. Romero-Garcia et al., Visible wavelength silicon nitride focusing grating coupler with AlCu/TiN reflector. Opt. Lett. 38(14), 2521–2523 (2013)

    Article  CAS  Google Scholar 

  25. H. Zhang et al., Efficient silicon nitride grating coupler with distributed Bragg reflector. Opt. Express 22(18), 21800–21805 (2014)

    Article  CAS  Google Scholar 

  26. W. **e et al., Low-loss silicon nitride waveguide hybridly integrated with colloidal quantum dots. Opt. Express 23, 12152–12160 (2015)

    Article  CAS  Google Scholar 

  27. R. Baets, Silicon photonics: silicon nitride versus silicon-on-insulator, Optical Society of America, Th3J.1 (2016).

  28. Ligentec SA. Silicon nitride-LIGENTEC. URL: https://www.ligentec.com/technology-ligentec/siliconnitride-ligentec/.

  29. H. Cai, A.W. Poon, Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add–drop devices. Opt. Lett. 35(17), 2855–2857 (2010)

    Article  CAS  Google Scholar 

  30. I. Goykhman, B. Desiatov, U. Levy, Ultrathin silicon nitride microring resonator for biophotonic applications at nm wavelength. Appl. Phys. Lett. 97(8), 8 (2010)

    Article  CAS  Google Scholar 

  31. Y. Okawachi, K. Saha, J.S. Levy, Y.H. Wen, M. Lipson, A.L. Gaeta, Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36(17), 3398–3400 (2011)

    Article  CAS  Google Scholar 

  32. F. Ferdous, H. Miao, D.E. Leaird, K. Srinivasan, J. Wang, L. Chen, L.T. Varghese, A.M. Weiner, Spectral line-by-line pulse sha** of on-chip microresonator frequency combs. Nat. Photon. 5(12), 770–776 (2011)

    Article  CAS  Google Scholar 

  33. J.S. Levy et al., CMOS-compatible multiple-wavelength oscillatorfor on-chip optical interconnects. Nat. Photon. 4, 37–40 (2010)

    Article  CAS  Google Scholar 

  34. C.J. Kruckel et al., Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides. Opt. Express 23, 25827–25837 (2015)

    Article  CAS  Google Scholar 

  35. J.F. Bauters, M.J. Heck, D.D. John et al., Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt. Express 19(4), 3163 (2011)

    Article  CAS  Google Scholar 

  36. K. Ikeda et al., Thermal and Kerr nonlinear properties of plasmadeposited silicon nitride/silicon dioxide waveguides. Opt. Express 16, 12987–12994 (2008)

    Article  CAS  Google Scholar 

  37. R. Soref, Mid-infrared photonics in silicon and germanium. Nat. Photon. 4, 495 (2010)

    Article  CAS  Google Scholar 

  38. M. Dinu, F. Quochi, H. Garcia, Third-order nonlinearities in silicon at telecom wavelength. Appl. Phys. Lett. 82(18), 2954–2956 (2003)

    Article  CAS  Google Scholar 

  39. J.F. Bauters, M.J. Heck, D.D. John et al., Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt. Express. 19(24), 24090 (2011)

    Article  CAS  Google Scholar 

  40. K.J.A. Martens et al., Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge. Nat. Commun. 8, 13878 (2017)

    Article  CAS  Google Scholar 

  41. K. Luke, A. Dutt, C.B. Poitras, M. Lipson, Overcoming Si3N4 film stress limitations for high quality factor ring resonators. Opt. Express 21, 22829–22833 (2013)

    Article  CAS  Google Scholar 

  42. A. Gondarenko, J.S. Levy, M. Lipson, High confinement micron-scale silicon nitride high Q ring resonator. Opt. Express 17, 11366–11370 (2009)

    Article  CAS  Google Scholar 

  43. M.H.P. Pfeiffer et al., Photonic damascene process for integrated high-Q microresonator based nonlinear photonics. Optica 3, 20–25 (2016)

    Article  CAS  Google Scholar 

  44. M.H.P. Pfeiffer et al., Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides. IEEE J. Select. Top. Quant. Electron. 24(4), 1–7 (2018)

    Article  Google Scholar 

  45. F. Morichetti et al., Box-shaped dielectric waveguides: a new concept in integrated optics? J. Lightw. Technol. 25(9), 2579–2589 (2007)

    Article  Google Scholar 

  46. C.G.H. Roeloffzen et al., Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview. IEEE J. Select. Top. Quant. Electron. 24(4), 749–766 (2018)

    Article  Google Scholar 

  47. K. Zinoviev et al., Silicon photonic biosensors for lab-on-a-chip applications. Adv. Opt. Technol. 383927, 1257–1259 (2008)

    Google Scholar 

  48. P. Munoz et al., Foundry developments towards silicon nitride photonics from visible to the mid-infrared. IEEE J. Select. Top. Quant. Electron. 25(5), 1–13 (2019)

    Article  Google Scholar 

  49. A.F. Gavela, D.G. Gar et al., Last advances in silicon-based optical biosensors. Sensors 16(3), 285 (2016)

    Article  Google Scholar 

  50. A. Dhakal, A.Z. Subramanian et al., Evanescent excitation and collection of spontaneous raman spectra using silicon nitride nanophotonic waveguides. Opt. Lett. 39(13), 4025–4028 (2014)

    Article  Google Scholar 

  51. G. Yurtsever et al., Photonic integrate Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography. Biomed. Opt. Express 5, 1050–1061 (2014)

    Article  Google Scholar 

  52. A. Ymeti, J. Greve et al., Ultrasensitive virus detection using a Young interferometer sensor. Nano Lett. 7, 394–397 (2007)

    Article  CAS  Google Scholar 

  53. F. Ghasemi, A.A. Eftekhar et al., Self-referenced silicon nitride array microring biosensor for toxin detection using glycans at visible wavelength. Proc of the SPIE 8594, 85940A (2013)

    Article  CAS  Google Scholar 

  54. Q. Liu, X. Tu et al., Highly sensitive Mach-zehnder interferometer biosensor based on silicon nitride slot waveguide. Sens. Actuators B 188, 681–688 (2013)

    Article  CAS  Google Scholar 

  55. M.C. Estevez, M. Alvarez, L.M. Lechuga, Integrated optical devices for lab-on-a-chip biosensing application. Laser Photo. 6(4), 463–487 (2012)

    Article  Google Scholar 

  56. P. Muellner, E. Melnik et al., CMOS-compatible Si3N4 waveguides for optical biosensing. Procedia Eng. 120, 578–581 (2015)

    Article  CAS  Google Scholar 

  57. J.C. Tinguely, Ø.I. Helle et al., Silicon nitride waveguide platform for fluorescence microscopy of cells. Opt. Express 25(22), 27678–27690 (2017)

    Article  CAS  Google Scholar 

  58. R. Diekmann, Ø.I. Helle et al., Chip-based wide field-of-view nanoscopy. Nat. Photon. 11, 322–328 (2017)

    Article  CAS  Google Scholar 

  59. B. Agnarsson, S. Ingthorsson et al., Evanescent-wave fluorescence microscopy using symmetric planar waveguides. Opt. Express 17(7), 5075–5082 (2009)

    Article  CAS  Google Scholar 

  60. B. Agnarsson, A.B. Josdottir et al., On-chip modulation of evanescent illumination and live-cell imaging with phlymer waveguides. Opt. Express 19(23), 22929–22935 (2011)

    Article  CAS  Google Scholar 

  61. H.M. Grandia, B. stadler, et al., Waveguide excitation fluorescence microscopy: A new tool for sensing and imaging the biointerface. Biosens, Bioelectron. 21(8), 1476–1482 (2006)

    Article  CAS  Google Scholar 

  62. A. Hassanzadeh, M. Nittsche, Waveguide evanescent field fluorescence microscopy: thin film fluorescence intensities and its application in cell biology. Appl. Phys. Lett. 92, 23503 (2008)

    Article  CAS  Google Scholar 

  63. B. Agnarsson, A. Lundgren et al., Evaescent light-scattering microscopy for label-free interfacial imaging: from single sub-100nm vesicles to live cells. ACS Nano 9(12), 11849–11862 (2015)

    Article  CAS  Google Scholar 

  64. M.J. Levene, J. Korlach et al., Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299(5607), 682–686 (2003)

    Article  CAS  Google Scholar 

  65. R. Diekmann, O.I. Helle et al., Chip-based side field-of-view nanoscopy. Nat Photon. 11, 322 (2017)

    Article  CAS  Google Scholar 

  66. J.-C. Tinguely, Ø.I. Helle, B.S. Ahluwalia, Silicon nitride waveguide platform for fuorescence microscopy of living cells. Opt. Express. 25, 27678–27690 (2017)

    Article  CAS  Google Scholar 

  67. A. Hassanzadeh et al., Visualization of the solubilization process of the plasma membrane of a living cell by waveguide evanescent field fluorescence microscopy. J. Biomed. Opt. 17(7), 076025 (2012)

    Article  CAS  Google Scholar 

  68. C.G.H. Roeloffzen, Low-loss Si3N4 TriPleX optical waveguides: Technology and applicationsoverview. IEEE J. Sel. Topics Quant. Electron. 24(4), 1–21 (2018)

    Article  Google Scholar 

  69. C. Taddei et al., Fully reconfigurable coupled ring resonator-based bandpass filter for microwave signal processing in Proceeding if the 2014 International Topical Meeting on Microwave Photonics (MWP) and the 2014 9th Asia-Pacific Microwave Photonics Conference (APMP), 44–47(2014).

  70. C.G.H. Roeloffzen, L. Zhuang, R.G. Heideman, A. Borreman, W. van Etten, Ring resonator-based tunable optical delay line in LPCVD waveguide technology. In Proceeding of the 10th IEEE/LEOS Symp. Benelux, Mons 79–82 (2005).

  71. J. Capmany, B. Ortega, D. Pastor, S. Sales, Discrete-time optical processing of microwave signals. J. Lightw. Technol. 23(2), 702–723 (2005)

    Article  Google Scholar 

  72. D.T. Spencer et al., An integrated-photonics optical-frequency synthesizer. ar**v:1708.05228 (2017).

  73. V. Torres-Company, A.M. Weiner, Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photon. Rev. 8, 368–393 (2014)

    Article  Google Scholar 

  74. T.J. Kippenberg, R. Holzwarth, S.A. Diddams, Microresonator-based optical frequency combs. Science 332(6029), 555–559 (2011)

    Article  CAS  Google Scholar 

  75. A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, J.L. O’Brien, Silica-on-silicon waveguide quantum circuits. Science 320(5876), 646–649 (2008)

    Article  CAS  Google Scholar 

  76. O. Adeline, D. Eleni, Recent advances on integrated quantum communications. J. Opt. 18(8), 083002 (2016)

    Article  CAS  Google Scholar 

  77. P. Gatkine, S. Veilleux, Y. Hu, J. Bland-Hawthorn, M. Dagenais, Arrayed waveguide grating spectrometers for astronomical applications: new results. Opt. Express 25(15), 17918–17935 (2017)

    Article  CAS  Google Scholar 

  78. C.V. Poulton et al., Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths. Opt. Lett. 42(1), 21–24 (2017)

    Article  CAS  Google Scholar 

  79. Service, L.I.M.P.W. Available: https://photonics.lionix-international.com/mpw-service/

  80. MPW, L. Available: https://www.ligentec.com/services/foundry/mpw/

  81. PIX4life. PIX4life. Available: http://pix4life.eu

  82. IMB-CNM, I.O.M.O.B. Silicon nitride photonic integration platform. Available:http://www.imb-cnm.csic.es/index.php/en/clean-room/silicon-nitride-technology

  83. K. Luke, A. Dutt, C.B. Poitras, M. Lipson, Overcoming Si3N4 film stress limitations for high quality factor ring resonators. Opt. Express 21(19), 22829–22833 (2013)

    Article  CAS  Google Scholar 

  84. J.P. Ep** et al., On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth. Opt. Express 23(15), 19596–19604 (2015)

    Article  CAS  Google Scholar 

  85. M.H.P. Pfeiffer et al., Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics. Optica 3(1), 20–25 (2016)

    Article  CAS  Google Scholar 

  86. 2013 International Technology Roadmap for Semiconductor (ITRS) http://itrs.net.

  87. Y. Ishikawa, S. Saito, IEICE Electron. Express, 11, 1–7 (2014)

  88. Y. Arakawa, T. Nakamura, Y. Urino, Silicon photonics for next generation system integration platform. IEEE Commun. Mag. 51, 72–73 (2013)

    Article  Google Scholar 

  89. M.J. Deen, P.K. Basu, Silicon Photonics Fundamentals and Devices (Wiley, New York, 2012).

    Book  Google Scholar 

  90. G. Reed, Silicon Photonics the State of the Art (Wiley, New York, 2008).

    Book  Google Scholar 

  91. S. Saito, A.Z. Al-Attili, K. Oda, Y. Ishikawa, Towards monolithic integration of germanium light sources on silicon chips. Semicond. Sci. Technol. 31, 043002 (2016)

    Article  CAS  Google Scholar 

  92. R. Newman, Optical studies of injected carriers II: Recombination radiation in germanium. Phys. Rev. 91, 1313–1314 (1953)

    Article  CAS  Google Scholar 

  93. J.R. Haynes, New radiation resulting from recombination of electrons and holes in germanium. Phys. Rev. 98, 1866–1868 (1955)

    Article  CAS  Google Scholar 

  94. R. Geiger, T. Zabel, H. Sigg, Group IV direct band gap photonics: methods, challenges, and opportunity. Front. Mater. 2(52), 1–15 (2015)

    Google Scholar 

  95. P. Vogl, M.M. Rieger, J.A. Majewski, G. Abstreiter, How to convert group-IV semiconductors into light emitters. Phys. Scr. 476 (1993).

  96. A. Gassenq, K. Guilloy, G. Osvaldo Dias, 1.9% bi-axial tensile strain in thick germanium suspended membranes fabricated in optical germanium-on-insulator substrates for laser applications. Appl. Phys. Lett. 107, 191904 (2015)

    Article  CAS  Google Scholar 

  97. F. Zhang, V.H. Crespi, P. Zhang, Prediction that uniaxial tension along (111) produces a direct band gap in germanium. Phys. Rev. Lett. 102, 156401 (2009)

    Article  CAS  Google Scholar 

  98. R. Geiger, T. Zabel, E. Marin, et al., Uniaxially stressed germanium with fundamental direct band gap, ar** rate of LT to HT for the growth of high quality Ge epilayer on Si (100) by RPCVD, Appl. Surf. Sci. 299 (2014)

  99. V. Reboud, A. Gassenq, J.M. Hartmann, J. Widiez, L. Virot, J. Aubin, K. Guilloy, S. Tardif, J.M. Fédéli, N. Pauc, A. Chelnokov, V. Calvo, Germanium based photonic components toward a full silicon/ germanium photonic platform. Prog. Cryst. Growth Charact. Mater. 63, 1–24 (2017)

    Article  CAS  Google Scholar 

  100. Y. Hoshi, K. Sawano, K. Hamaya et al., Formation of tensilely strained germanium-on-insulator. Appl. Phys. Express 5, 015701 (2012)

    Article  CAS  Google Scholar 

  101. K.H. Lee, S.Y. Bao, G.Y. Chong et al., Fabrication and characterization of germanium-on-insulator through epitaxy, bonding, and layer transfer. J. Appl. Phys. 116, 103506 (2014)

    Article  CAS  Google Scholar 

  102. M.J. Süess, R. Geiger, R.A. Minamisawa et al., Analysis of enhanced light emission from highly strained germanium microbridges. Nat. Photo. 7, 466–472 (2013)

    Article  CAS  Google Scholar 

  103. J.R. Jain, A. Hryciw, T.M. Baer et al., A micromachining-based technology for enhancing germanium light emission via tensile strain. Nat. Photon. 6, 398–405 (2012)

    Article  CAS  Google Scholar 

  104. J.R. Sánchez-Pérez, C. Boztug, F. Chen et al., Direct-bandgap light-emitting germanium in tensilely strained nanomembranes. Proc. Natl Acad. Sci. USA 108, 18893–18898 (2011)

    Article  CAS  Google Scholar 

  105. M. El Kurdi, M. Prost et al., Direct band gap germanium microdisks obtained with silicon nitride stressor layers. ACS Photon. 3, 443–448 (2016)

    Article  CAS  Google Scholar 

  106. C. Boztug, F. Chen, J. R. Sanchez-Perez, et al., Direct-bandgap germanium active layers pumped above transparency based on tensilely strained nanomembranes, CLEO:2011, PDPA2 (2011).

  107. R. Geiger, T. Zabel, H. Sigg, Group iv direct band gap photonics: methods, challenges, and opportunities, Front. Mater., 2, 2015.

  108. H. Ye, J. Yu, Germanium epitaxy on silicon. Sci. Technol. Adv. Mater. 15(2), 024601 (2014)

    Article  CAS  Google Scholar 

  109. H.H. Radamson, H. Zhou, Z. Wu, X. He, H. Lin, J. Liu, J. **ang, Z. Kong, W. **ong et al., State of the art and future perspectives in advanced CMOS technology. Nanomaterials 10(8), 15555 (2020)

    Article  CAS  Google Scholar 

  110. Y. Ishikawa, K. Wada, D.D. Cannon et al., Strain-induced band gap shrinkage in Ge grown on Si substrate. Appl. Phys. Lett. 82(13), 2044–2046 (2003)

    Article  CAS  Google Scholar 

  111. Y. Ishikawa, K. Wada, J. Liu, D.D. Cannon et al., Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate. J. Appl. Phys 98, 013501 (2005)

    Article  CAS  Google Scholar 

  112. D.S. Sukhdeo, D. Nam, J.-H. Kang et al., Direct bandgap germanium-on-silicon inferred from 57% uniaxial tensile strain. Photon. Res. 2(3), A8–A13 (2014)

    Article  CAS  Google Scholar 

  113. K. Tani, K. Oda, et al., Enhanced electroluminescence from germanium waveguides by local tensile strain with silicon nitride stressors, International of the Conference on Solid State Devices and Materials (SSDM), K-6-3(2013).

  114. G. Capellini et al., Strain analysis in SiN/Ge microstructures obtained via Si-complementary metal oxide semiconductor compatible approach. J. Appl. Phys. 113(1), 013513 (2013)

    Article  CAS  Google Scholar 

  115. A. Ghrib, M. El Kurdi, M. de Kersauson, M. Prost, S. Sauvage, X. Checoury, G. Beaudoin, I. Sagnes, P. Boucaud, Tensilestrained germanium microdisks. Appl. Phys. Lett. 102(22), 221112 (2013)

    Article  CAS  Google Scholar 

  116. A. Ghrib, M.E. Kurdi et al., All-around SiN stressor for high and homogeneous tensile strain in germanium microdisk cavities. Adv. Opt. Mater. 3, 353–358 (2015)

    Article  CAS  Google Scholar 

  117. E. Geert, V. Peter, K. An De, J. Malgorzata, M. De Kristin De, Scalability of stress induced by contact-etch-stop layers: a simulation study, IEEE Trans. Electron Devices, 54(6), 2007.

  118. S. Saito, F.Y Gardes, A.Z. Al-Attili, Group IV light sources to enable the convergence of photonics and electronics, Front. Mater. 1, 2014.

  119. A. Ghrib, M.E. Kurdi, M. Prost et al., All-around SiN stressor for high and homogeneoustensile strain in germanium microdisk cavities. Adv. Opt. Mater. 3, 353–358 (2015)

    Article  CAS  Google Scholar 

  120. M.E. Kurdi, M. Prost, A. Ghrib, Direct band gap germanium microdisks obtained with silicon nitride stressor layers. ACS Photon. 3(3), 443–448 (2016)

    Article  CAS  Google Scholar 

  121. H.H. Radamson, M. Noroozi, A. Jamshidi, P.E. Thompson, M. Östling, Strain engineering in GeSnSi materials. ECS Trans. 50(9), 527–531 (2013)

    Article  CAS  Google Scholar 

  122. M. Noroozi, A. Abedin, M. Moeen, M. Östling, H.H. Radamson, CVD growth of GeSnSiC alloys using disilane, digermane, Tin Tetrachloride and methylsilane. ECS Trans. 64(6), 703 (2014)

    Article  CAS  Google Scholar 

  123. S. Wirths, R. Geiger, N. von den Driesch et al., Lasing in direct-bandgap GeSn alloy grown on Si. Nat. Photon 9, 88–92 (2015)

    Article  CAS  Google Scholar 

  124. S. Luryi, A. Kastalsky, J.C. Bean, New infrared detector on a silicon chip. IEEE Trans. Electron. Dev. 31, 1135–1139 (1984)

    Article  Google Scholar 

  125. M.T. Currie, S.B. Samavedam, T.A. Langdo, C.W. Leitz, E.A. Fitzgerald, Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Appl. Phys. Lett. 72, 1718–1720 (1998)

    Article  CAS  Google Scholar 

  126. S.B. Samavedam, M.T. Currie, T.A. Langdo, E.A. Fitzgerald, High-quality germanium photodiodes integrated on silicon substrates using optimized relaxed graded buffers. Appl. Phys. Lett. 73, 2125–2127 (1998)

    Article  CAS  Google Scholar 

  127. Z. Huang, J. Oh, J.C. Campbell, Back-side-illuminated high-speed Ge photodetector fabricated on Si substrate using thin SiGe buffer layers. Appl. Phys. Lett. 85, 3286–3288 (2004)

    Article  CAS  Google Scholar 

  128. M. Xuewei Zhao, M.S. Moeen, G.W. Toprak, J. Luo, X. Ke, L. Zhihua, D. Liu, W. Wang, C. Zhao, H.H. Radamson, Design impact on the performance of Ge PIN photodetectors. J. Mater. Sci. 31, 18–25 (2020)

    Google Scholar 

  129. S. Lischke et al., High bandwidth, high responsivity waveguide coupled germanium p-i-n photodiode. Opt. Express 23, 27213–27220 (2015)

    Article  CAS  Google Scholar 

  130. H.H. Radamson, M. Kolahdouz, S. Shayestehaminzadeh, A.A. Farniya, S. Wissmar, Carbon-doped single-crystalline SiGe/Si thermistor with high temperature coefficient of resistance and low noise level. Appl. Phys. Lett. 97, 223507–223507 (2010)

    Article  CAS  Google Scholar 

  131. K.H. Lee, S.Y. Bao, G.Y. Chong, Y.H. Tan, E.A. Fitzgerald, C.S. Tan, Fabrication and characterization of germanium-on-insulator through epitaxy, bonding, and layer transfer. J. Appl. Phys. 116, 103506 (2014)

    Article  CAS  Google Scholar 

  132. T. Yin, R. Cohen, M.M. Morse, G. Sarid, Y. Chetrit, D. Rubin, M.J. Paniccia, 31GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate. Opt. Express 15(21), 13965 (2007)

    Article  CAS  Google Scholar 

  133. J. Wang, S. Lee, Ge-photodetectors for Si-based optoelectronic integration. Sensors 11, 696–718 (2011)

    Article  CAS  Google Scholar 

  134. H.T. Chen, J. Verbist, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, P. Absil, B. Moeneclaey, X. Yin, J. Bauwelinck, J. Van Campenhout, G. Roelkens, 25-Gb/s 1310-nm optical receiver based on a sub-5-V Waveguide-Coupled germanium avalanche photodiode, IEEE Photon. J. 7(4), 2015.

  135. H. Chen, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, S. Balakrishnan, P. Absil, W. Yao, L. Shen, G. Roelkens, and J. Van Campenhout, −1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond. Opt. Express, 24(5), 2016.

  136. P. Verheyen, M. Pantouvaki, J. Van Campenhout, P. Absil, H. Chen, P. De Heyn, G. Lepage, J. De Coster, P. Dumon, A. Masood, D. Van Thourhout, R. Baets, and W. Bogaerts, Highly uniform 28 Gb/s Si photonics platform for high-density, low-power WDM optical interconnects. Opt. Soc. Am., IW3A.4 (2014).

  137. G. Wang, C. Qin, H. Yin, J. Luo, N. Duan, P. Yang, X. Gao, T. Yang, J. Li, J. Yan, H. Zhu, W. Wang, D. Chen, T. Ye, C. Zhao, H.H. Radamson, Study of SiGe selective epitaxial process integration with high-k and metal gate for 16/14 nm nodes FinFET technology. Microelectron. Eng. 163, 49–54 (2016)

    Article  CAS  Google Scholar 

  138. C. Qin, H. Yin, G. Wang, P. Hong, X. Ma, H. Cui, Lu. Yihong, L. Meng, H. Yin, H. Zhong, J. Yan, H. Zhu, Xu. Qiuxia, J. Li, C. Zhao, H.H. Radamson, Study of sigma-shaped source/drain recesses for embedded-SiGe pMOSFETs. Microelectron. Eng. 181, 22–28 (2017)

    Article  CAS  Google Scholar 

  139. J. Hållstedt, M. Kolahdouz-Ghandi, H.H. Radamson, Pattern dependency in selective epitaxy of B-doped SiGe layers for advanced metal oxide semiconductor field effect transistors. J Appl. Phys. 103, 054907 (2008)

    Article  CAS  Google Scholar 

  140. H. Henry, Radamson, Mohammadreza Kolahdouz, Selective epitaxy growth of Si1-XGex layers for MOSFETs and FinFETs. J. Mater. Sci. 26, 4584–4603 (2015)

    Google Scholar 

  141. H.S. Yang, R. Malik, S. Narasimha et al., Dual stress liner for high performance sub-45 nm gate length SO1 CMOS manufacturing. IEDM Technical Digest. IEEE International Electron Devices Meeting, (2004)

  142. P. Nguyen, S. Barraud, C. Tabone, L. Gaben, M. Cassé, F. Glowacki, et al. Dual-channel CMOS co-integration with Si NFET and strained-SiGe PFET in nanowire device architecture featuring sub-15nm gate length. in IEEE International Electron Devices Meeting, (2014).

  143. S.-L. Zhang et al., Metal silicides in CMOS technology: past, present, and future trends. Crit. Rev. Solid State Mater. Sci. 28(1), 1–129 (2003)

    Article  Google Scholar 

  144. B. Varadarajan, J. Sims, A. Singhal, M. Christensen, G. Jiang, K. Ilcisir, K. Shrinivasan, M. Ayoub, V. Dharmadhikari, The development of high stress silicon nitride film used in strain silicon. Integr. Circuit Appl. 2, 36–39 (2006)

    Google Scholar 

  145. J. Wang, The application and forecast of high stress silicon nitride films. Integr. Circuit Appl. 4, 63–64 (2008)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the projects of the construction of new research and development institutions (Grant No. 2019B090904015) and the construction of high-level innovation research institute from the Guangdong Greater Bay Area Institute of Integrated Circuit and System (Grant No. 2019B090909006), in part by the National Key Research and Development Program of China (Grant No. 2016YFA0301701), the Important National Science & Technology Specific Projects of China (Grant No.2017ZX02301007) and the Youth Innovation Promotion Association of CAS (Grant No. 2016112).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjuan **ong or Henry H. Radamson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ong, W., Wang, G., Li, J. et al. SiN-based platform toward monolithic integration in photonics and electronics. J Mater Sci: Mater Electron 32, 1–18 (2021). https://doi.org/10.1007/s10854-020-04909-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04909-z

Navigation