Log in

Rietveld refinement, optical, dielectric and ac conductivity studies of Ba-doped SrSnO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The samples SrSnO3 (SBS0) and Sr0.98Ba0.02SnO3 (SBS2) were synthesized using sol–gel route, followed by calcination at 1073 K. Rietveld refinement analysis of XRD data shows orthorhombic phase under \(Pbnm\) space group. Lattice parameters, volume and density of the doped sample were found to be higher than undoped, due to higher ionic radii of Ba2+. Further, the Raman spectrum of samples was carried out to study the local structure. Optical properties of samples show intense absorption in UV range and transparent in visible to NIR region. The direct bandgap of samples was found to be 3.88 eV and 3.97 eV for SBS0 and SBS2, respectively, reflecting the semiconducting nature of a sample. Dielectric properties of the sample were explained in terms of interfacial and orientational polarization. Temperature-dependent conductivity analysis of the sample reflected an Arrhenius-type charge transport, with two conduction regions in SBS2 and single conduction in SBS0. In the present case, the activation energy value represents a mixed ionic and electronic conductivity of the sample, making it a promising candidate for mixed ionic and electronic conductor device application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Glerup, K.S. Knight, F.W. Poulsen, Mater. Res. Bull. 40, 507 (2005)

    CAS  Google Scholar 

  2. D.J. Singh, Q. Xu, K.P. Ong, Appl. Phys. Lett. 104, 1 (2014)

    Google Scholar 

  3. A.-M. Azad, L.L.W. Shyan, P.T. Yen, J. Alloys Compd. 282, 109 (1999)

    CAS  Google Scholar 

  4. B. Hadjarab, A. Bouguelia, M. Trari, J. Phys. Chem. Solids 68, 1491 (2007)

    CAS  Google Scholar 

  5. S.C. De Souza, M.C.F. Alves, A.L.M. De Oliveira, E. Longo, F. Ticiano Gomes Vieira, R.M. Gomes, L.E.B. Soledade, A.G. De Souza, I.M. Garcia Dos Santos, J. Therm. Anal. Calorim. 97, 185 (2009)

    Google Scholar 

  6. M.K. Singh, J.W. Hong, N.K. Karan, H.M. Jang, R.S. Katiyar, S.A.T. Redfern, J.F. Scott, J. Phys. Condens. Matter 22, 095901 (2010)

    Google Scholar 

  7. A. Stanulis, A. Katelnikovas, M. Van Bael, A. Hardy, A. Kareiva, T. Justel, J. Lumin. 172, 323 (2016)

    CAS  Google Scholar 

  8. B. Hadjarab, M. Trari, N. Zidi, S. Omeiri, A. Bouguelia, A. Akroun, Phys. B Condens. Matter 405, 3355 (2010)

    Google Scholar 

  9. U. Kumar, S. Upadhyay, J. Mater. Sci. Mater. Electron. 31, 5721 (2020)

    CAS  Google Scholar 

  10. V.V. Shvartsman, J. Zhai, W. Kleemann, Ferroelectrics 379, 77 (2009)

    CAS  Google Scholar 

  11. B. Dalal, B. Sarkar, S.K. De, J. Appl. Phys. 115, 0 (2014)

    CAS  Google Scholar 

  12. E. Bakken, S. Stølen, T. Norby, R. Glenne, M. Budd, Solid State Ionics 167, 367 (2004)

    CAS  Google Scholar 

  13. J. Tang, Z. Zou, J. Ye, J. Phys. Chem. C 111, 12779 (2007)

    CAS  Google Scholar 

  14. F. Chauveau, J. Mougin, F. Mauvy, J.M. Bassat, J.C. Grenier, Int. J. Hydrogen Energy 36, 7785 (2011)

    Google Scholar 

  15. W.F. Zhang, J. Tang, J. Ye, Chem. Phys. Lett. 418, 174 (2006)

    CAS  Google Scholar 

  16. A.M. Azad, T.Y. Pang, M.A. Alim, Act. Passiv. Electron. Compon. 26, 16 (2003)

    Google Scholar 

  17. Q. Liu, J. Dai, X. Zhang, G. Zhu, Z. Liu, G. Ding, Thin Solid Films 519, 6059 (2011)

    CAS  Google Scholar 

  18. T. Alammar, I. Hamm, V. Grasmik, M. Wark, A.V. Mudring, Inorg. Chem. 56, 6920 (2017)

    CAS  Google Scholar 

  19. S. Kamimura, H. Yamada, C.N. Xu, Appl. Phys. Lett. 101, 091113 (2012)

    Google Scholar 

  20. T. Ishihara, H. Fujita, H. Nishiguchi, Y. Takita, Sens. Actuators B Chem. 65, 319 (2000)

    CAS  Google Scholar 

  21. Y. Shimizu, J. Electrochem. Soc. 136, 1206 (1989)

    CAS  Google Scholar 

  22. E. Moreira, J.M. Henriques, D.L. Azevedo, E.W.S. Caetano, V.N. Freire, E.L. Albuquerque, J. Solid State Chem. 184, 921 (2011)

    CAS  Google Scholar 

  23. D.J. Singh, Q. Xu, K.P. Ong, Appl. Phys. Lett. 104(1), 011910 (2014)

    Google Scholar 

  24. Z. Kotan, M. Ayvacikli, Y. Karabulut, J. Garcia-guinea, L. Tormo, A. Canimoglu, T. Karali, N. Can, J. Alloys Compd. 581, 101 (2013)

    CAS  Google Scholar 

  25. S. Ismail-Beigi, F.J. Walker, S.W. Cheong, K.M. Rabe, C.H. Ahn, APL Mater. 3, 062510 (2015)

    Google Scholar 

  26. A. Stanulis, S. Sakirzanovas, M. Van Bael, A. Kareiva, J. Sol–Gel. Sci. Technol. 64, 643 (2012)

    CAS  Google Scholar 

  27. S. Singh, P. Singh, O. Parkash, D. Kumar, Adv. Appl. Ceram. 106, 231 (2007)

    CAS  Google Scholar 

  28. A. Stanulis, A. Selskis, R. Ramanauskas, A. Beganskiene, A. Kareiva, Mater. Chem. Phys. 130, 1246 (2011)

    CAS  Google Scholar 

  29. A.A. Kumar, A. Kumar, J.K. Quamara, G.R. Dillip, S.W. Joo, J. Kumar, RSC Adv. 5, 17202 (2015)

    CAS  Google Scholar 

  30. M. Muralidharan, V. Anbarasu, A. Elaya Perumal, K. Sivakumar, J. Mater. Sci. Mater. Electron. 28, 4125 (2017)

    CAS  Google Scholar 

  31. S. Ouni, S. Nouri, J. Rohlicek, R. Ben Hassen, J. Solid State Chem. 192, 132 (2012)

    CAS  Google Scholar 

  32. G. Prathiba, S. Venkatesh, N. Harish Kumar, Solid State Commun. 150, 1436 (2010)

    CAS  Google Scholar 

  33. O.M. Parkash, K.D. Mandal, C.C. Christopher, M.S. Sastry, D. Kumar, Bull. Mater. Sci. 17, 253 (1994)

    CAS  Google Scholar 

  34. W.D. Callister, D.G. Rethwisch, Fundamentals of Materials Science and Engineering: An Integrated Approach (Wiley, Hoboken, 2012)

    Google Scholar 

  35. R.D. Shannon, C.T. Prewitt, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 26, 1046 (1970)

    CAS  Google Scholar 

  36. U. Kumar, D. Yadav, S. Upadhyay, J. Am. Ceram. Soc. 103, 5743 (2020)

    CAS  Google Scholar 

  37. U. Kumar, M.J. Ansaree, A.K. Verma, S. Upadhyay, G. Gupta, Mater. Res. Express 4, 116304 (2017)

    Google Scholar 

  38. U. Kumar, K. Ankur, D. Yadav, S. Upadhyay, Mater. Charact. 162, 110198 (2020)

    CAS  Google Scholar 

  39. U. Kumar, D. Yadav, A.K. Thakur, K.K. Srivastav, S. Upadhyay, J. Therm. Anal. Calorim. 135, 1987 (2018)

    Google Scholar 

  40. M.K. Singh, N.K. Karan, R.S. Katiyar, J.F. Scott, H.M. Jang, J. Phys. Condens. Matter 20, 055210 (2008)

    Google Scholar 

  41. Y. Zhang, H. Zhang, Y. Wang, W.F. Zhang, J. Phys. Chem. C 112, 8553 (2008)

    CAS  Google Scholar 

  42. U. Kumar, S. Upadhyay, Mater. Lett. 227, 100 (2018)

    CAS  Google Scholar 

  43. V. Vijaykumar, G. Nirala, D. Yadav, U. Kumar, S. Upadhyay, Int. J. Energy Res. 44, 4652 (2020)

    CAS  Google Scholar 

  44. U. Kumar, S. Upadhyay, Mater. Res. Express 6, 055805 (2019)

    CAS  Google Scholar 

  45. U. Kumar, D. Yadav, S. Upadhyay, A.K. Thakur, A.I.P. Conf. Proc. 1942, 10 (2018)

    Google Scholar 

  46. V. Thangadurai, P.S. Beurmann, W. Weppner, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 100, 18 (2003)

    Google Scholar 

Download references

Acknowledgements

AK thankfully acknowledges the University Grant Commission (UGC) of India for providing UGC research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Upendra Kumar or Manoj K Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Khan, B., Yadav, V. et al. Rietveld refinement, optical, dielectric and ac conductivity studies of Ba-doped SrSnO3. J Mater Sci: Mater Electron 31, 16838–16848 (2020). https://doi.org/10.1007/s10854-020-04240-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04240-7

Navigation