Log in

A high energy density flexible symmetric supercapacitor based on Al-doped MnO2 nanosheets @ carbon cloth electrode materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The drawback of traditional capacitors with low energy density forces people to develop high-performance supercapacitor materials. Herein, the Al-doped MnO2 @ carbon cloth is selected as the ideal electrode material. A typical hydrothermal reaction can be used to synthesize Al-doped MnO2 @ carbon cloth at 150 °C for 4 h. Its operating window can be successfully expanded from 0–0.8 to 0–1.2 V, and the areal-specific capacitance reaches 1043 mF cm−2, kee** 91.1% of the original after cycling 5000 times at a current density of 20 mA cm−2. Using the electrode materials designed above, the flexible symmetrical supercapacitor is successfully assembled. This device shows a greater operating window of 0–2.3 V, a superior large areal-specific capacitance of 521.91 mF cm−2, and the energy density remarkably reaches 4.72 mWh cm−3. After 100 bending cycles, there is also basically no loss in performance. This study highlights the promising prospects of the improvement of MnO2 @ CC materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X. He, X. Mao, C. Zhang, W. Yang, Y. Zhou, Y. Yang, J. Xu, Flexible binder-free hierarchical copper sulfide/carbon cloth hybrid supercapacitor electrodes and the application as negative electrodes in asymmetric supercapacitor. J. Mater. Sci. Mater. Electron. 31, 2145–2152 (2019)

    Google Scholar 

  2. Y. Lv, A. Liu, Z. Shi, J. Mu, Z. Guo, X. Zhang, H. Che, Hierarchical MnCo2O4/NiMn layered double hydroxide composite nanosheet arrays on nickel foam for enhanced electrochemical storage in supercapacitors. ChemElectroChem 5, 3968–3979 (2018)

    CAS  Google Scholar 

  3. H. Wang, C. Xu, Y. Chen, Y. Wang, MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density. Energy Storage Mater. 8, 127–133 (2017)

    Google Scholar 

  4. A. Muzaffar, M. Basheer Ahamed, K. Deshmukh, Hydrothermal synthesis of ZnWO4–MnO2 nanopowder doped with carbon black nanoparticles for high-performance supercapacitor applications. J. Mater. Sci. Mater. Electron. 30, 21250–21258 (2019)

    CAS  Google Scholar 

  5. A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006)

    CAS  Google Scholar 

  6. G. Moreno-Fernandez, M. Kunowsky, M.Á. Lillo-Ródenas, J. Ibañez, J.M. Rojo, New carbon monoliths for supercapacitor electrodes. Looking at the double layer. ChemElectroChem 4, 1016–1025 (2017)

    CAS  Google Scholar 

  7. Z. Song, H. Duan, D. Zhu, Y. Lv, W. **ong, T. Cao, L. Li, M. Liu, L. Gan, Ternary-doped carbon electrodes for advanced aqueous solid-state supercapacitors based on a “water-in-salt” gel electrolyte. J. Mater. Chem. A 7, 15801–15811 (2019)

    CAS  Google Scholar 

  8. J. Chen, H. Wei, H. Chen, W. Yao, H. Lin, S. Han, N/P co-doped hierarchical porous carbon materials for superior performance supercapacitors. Electrochim. Acta 271, 49–57 (2018)

    CAS  Google Scholar 

  9. J. Zhang, Y. Wang, C. Yu, T. Zhu, Y. Li, J. Cui, J. Wu, X. Shu, Y. Qin, J. Sun, J. Yan, Y. Zhang, Y. Wu, Hierarchical NiCo2O4/MnO2 core–shell nanosheets arrays for flexible asymmetric supercapacitor. J. Mater. Sci. 55, 688–700 (2019)

    Google Scholar 

  10. H. Chen, J. Li, C. Long, T. Wei, G. Ning, J. Yan, Z. Fan, Nickel sulfide/graphene/carbon nanotube composites as electrode material for the supercapacitor application in the sea flashing signal system. J. Mar. Sci. Appl. 13, 462–466 (2014)

    Google Scholar 

  11. A. Bello, K. Makgopa, M. Fabiane, D. Dodoo-Ahrin, K.I. Ozoemena, N. Manyala, Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications. J. Mater. Sci. 48, 6707–6712 (2013)

    CAS  Google Scholar 

  12. H. Jiang, T. Zhao, C. Yan, J. Ma, C. Li, Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances. Nanoscale 2, 2195–2198 (2010)

    CAS  Google Scholar 

  13. R. Wang, X. Yan, J. Lang, Z. Zheng, P. Zhang, A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials. J. Mater. Chem. A 2, 12724–12732 (2014)

    CAS  Google Scholar 

  14. J. Li, W. Zhao, F. Huang, A. Manivannan, N. Wu, Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes. Nanoscale 3, 5103–5109 (2011)

    CAS  Google Scholar 

  15. V. Subramanian, Mesoporous anhydrous RuO2 as a supercapacitor electrode material. Solid State Ion. 175, 511–515 (2004)

    CAS  Google Scholar 

  16. T. Zhu, J.S. Chen, X.W. Lou, Shape-controlled synthesis of porous Co3O4 nanostructures for application in supercapacitors. J. Mater. Chem. 20, 7015–7020 (2010)

    CAS  Google Scholar 

  17. Z. Tang, C.-H. Tang, H. Gong, A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv. Funct. Mater. 22, 1272–1278 (2012)

    CAS  Google Scholar 

  18. S. He, W. Chen, Application of biomass-derived flexible carbon cloth coated with MnO2 nanosheets in supercapacitors. J. Power Sources 294, 150–158 (2015)

    CAS  Google Scholar 

  19. P.A. Shinde, V.C. Lokhande, T. Ji, C.D. Lokhande, Facile synthesis of hierarchical mesoporous weirds-like morphological MnO2 thin films on carbon cloth for high performance supercapacitor application. J. Colloid Interface Sci. 498, 202–209 (2017)

    CAS  Google Scholar 

  20. D. Guo, X. Yu, W. Shi, Y. Luo, Q. Li, T. Wang, Facile synthesis of well-ordered manganese oxide nanosheet arrays on carbon cloth for high-performance supercapacitors. J. Mater. Chem. A 2, 8833–8838 (2014)

    CAS  Google Scholar 

  21. Z. Xu, S. Sun, W. Cui, J. Lv, Y. Geng, H. Li, J. Deng, Interconnected network of ultrafine MnO2 nanowires on carbon cloth with weed-like morphology for high-performance supercapacitor electrodes. Electrochim. Acta 268, 340–346 (2018)

    CAS  Google Scholar 

  22. Q. Zong, Q. Zhang, X. Mei, Q. Li, Z. Zhou, D. Li, M. Chen, F. Shi, J. Sun, Y. Yao, Z. Zhang, Facile synthesis of Na-doped MnO2 nanosheets on carbon nanotube fibers for ultrahigh-energy-density all-solid-state wearable asymmetric supercapacitors. ACS Appl. Mater. Interfaces 10, 37233–37241 (2018)

    CAS  Google Scholar 

  23. R. Poonguzhali, N. Shanmugam, R. Gobi, A. Senthilkumar, G. Viruthagiri, N. Kannadasan, Effect of Fe do** on the electrochemical capacitor behavior of MnO2 nanocrystals. J. Power Sources 293, 790–798 (2015)

    CAS  Google Scholar 

  24. A.M. Hashem, H.M. Abuzeid, N. Narayanan, H. Ehrenberg, C.M. Julien, Synthesis, structure, magnetic, electrical and electrochemical properties of Al, Cu and Mg doped MnO2. Mater. Chem. Phys. 130, 33–38 (2011)

    CAS  Google Scholar 

  25. Z. Hu, X. **ao, L. Huang, C. Chen, T. Li, T. Su, X. Cheng, L. Miao, Y. Zhang, J. Zhou, 2D vanadium doped manganese dioxides nanosheets for pseudocapacitive energy storage. Nanoscale 7, 16094–160949 (2015)

    CAS  Google Scholar 

  26. J. Li, Y. Ren, S. Wang, Z. Ren, J. Yu, Transition metal doped MnO2 nanosheets grown on internal surface of macroporous carbon for supercapacitors and oxygen reduction reaction electrocatalysts. Appl. Mater. Today 3, 63–72 (2016)

    Google Scholar 

  27. C. Tang, X. Wei, Y. Jiang, X. Wu, L. Han, K. Wang, J. Chen, Cobalt-doped MnO2 hierarchical yolk-shell spheres with improved supercapacitive performance. J. Phys. Chem. C 119, 8465–8471 (2015)

    CAS  Google Scholar 

  28. Z. Yang, X. Wang, Y. Huang, First-principles study on the do** effects of Al in α-MnO2. Curr. Appl. Phys. 15, 1556–1561 (2015)

    Google Scholar 

  29. C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, X.W.D. Lou, Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 2, 4592–4597 (2012)

    Google Scholar 

  30. J. Yang, L. Lian, H. Ruan, F. **e, M. Wei, Nanostructured porous MnO2 on Ni foam substrate with a high mass loading via a CV electrodeposition route for supercapacitor application. Electrochim. Acta 136, 189–194 (2014)

    CAS  Google Scholar 

  31. L. Yu, G. Zhang, C. Yuan, X.W. Lou, Hierarchical NiCo2O4@MnO2 core–shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem. Commun. 49, 137–139 (2013)

    CAS  Google Scholar 

  32. J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 48, 3825–3833 (2010)

    CAS  Google Scholar 

  33. Y. Liu, L. Guo, X. Teng, J. Wang, T. Hao, X. He, Z. Chen, High-performance 2.5 V flexible aqueous asymmetric supercapacitors based on K+/Na+-inserted MnO2 nanosheets. Electrochim. Acta 300, 9–17 (2019)

    CAS  Google Scholar 

  34. H. Wei, J. Wang, S. Yang, W. Wang, D. Hou, T. Li, Synthesis of 3D mesoporous wall-like MnO2 with improved electrochemical performance. J. Electron. Mater. 46, 1539–1545 (2016)

    Google Scholar 

  35. N. Fu, J. Yu, J. Zhao, R. Liu, F. Li, Y. Du, Z. Yang, In-situ preparation of nitrogen-doped unimodal ultramicropore carbon nanosheets with ultrahigh gas selectivity. Carbon 149, 538–545 (2019)

    CAS  Google Scholar 

  36. N.C. Maile, S.K. Shinde, R.T. Patil, A.V. Fulari, R.R. Koli, D.Y. Kim, D.S. Lee, V.J. Fulari, Structural and morphological changes in binder-free MnCo2O4 electrodes for supercapacitor applications: effect of deposition parameters. J. Mater. Sci. Mater. Electron. 30, 3729–3743 (2019)

    CAS  Google Scholar 

  37. J. Wang, Y. Yang, Z. Huang, F. Kang, Synthesis and electrochemical performance of MnO2/CNTs-embedded carbon nanofibers nanocomposites for supercapacitors. Electrochim. Acta 75, 213–219 (2012)

    CAS  Google Scholar 

  38. W. Yao, J. Wang, H. Li, Y. Lu, Flexible α-MnO2 paper formed by millimeter-long nanowires for supercapacitor electrodes. J. Power Sources 247, 824–830 (2014)

    CAS  Google Scholar 

  39. L. Yin, I. Adler, T. Tsang, L.J. Matienzo, S.O. Grim, Paramagnetism and shake-up satellites in X-ray photoelectron spectra. Chem. Phys. Lett. 24, 81–84 (1974)

    CAS  Google Scholar 

  40. J.P. Holgado, G. Munuera, J.P. Espinós, A.R. González-Elipe, XPS study of oxidation processes of CeOx defective layers. Appl. Surf. Sci. 158, 164–171 (2000)

    CAS  Google Scholar 

  41. Z. Song, H. Duan, L. Li, D. Zhu, T. Cao, Y. Lv, W. **ong, Z. Wang, M. Liu, L. Gan, High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5 V gel-type electrolyte. Chem. Eng. J. 372, 1216–1225 (2019)

    CAS  Google Scholar 

  42. J. Yu, N. Fu, J. Zhao, R. Liu, F. Li, Y. Du, Z. Yang, High specific capacitance electrode material for supercapacitors based on resin-derived nitrogen-doped porous carbons. ACS Omega 4, 15904–15911 (2019)

    CAS  Google Scholar 

  43. K.M. Nam, D.H. Shin, N. Jung, M.G. Joo, S. Jeon, S.M. Park, B.Y. Chang, Development of galvanostatic Fourier transform electrochemical impedance spectroscopy. Anal. Chem. 85, 2246–2252 (2013)

    CAS  Google Scholar 

  44. L.-D. Chen, Y.-Q. Zheng, H.-L. Zhu, Manganese oxides derived from Mn(II)-based metal–organic framework as supercapacitor electrode materials. J. Mater. Sci. 53, 1346–1355 (2017)

    Google Scholar 

  45. D. Xue, D. Zhu, H. Duan, Z. Wang, Y. Lv, W. **ong, L. Li, M. Liu, L. Gan, Deep-eutectic-solvent synthesis of N/O self-doped hollow carbon nanorods for efficient energy storage. Chem. Commun. 55, 11219–11222 (2019)

    CAS  Google Scholar 

  46. S. Chen, J. Zhu, Q. Han, Z. Zheng, Y. Yang, X. Wang, Shape-controlled synthesis of one-dimensional MnO2 via a facile quick-precipitation procedure and its electrochemical properties. Cryst. Growth Des. 9, 4356–4361 (2009)

    CAS  Google Scholar 

  47. J.P. Alper, M.S. Kim, M. Vincent, B. Hsia, V. Radmilovic, C. Carraro, R. Maboudian, Silicon carbide nanowires as highly robust electrodes for micro-supercapacitors. J. Power Sources 230, 298–302 (2013)

    CAS  Google Scholar 

  48. T. Qin, H. Chen, Y. Zhang, X. Chen, L. Liu, D. Yan, S. Ma, J. Hou, F. Yu, S. Peng, Modulating surface chemistry of heteroatom-rich micropore carbon cloth electrode for aqueous 2.1 V high-voltage window all-carbon supercapacitor. J. Power Sources 431, 232–238 (2019)

    CAS  Google Scholar 

  49. L. Wang, H. Yang, X. Liu, R. Zeng, M. Li, Y. Huang, X. Hu, Constructing hierarchical tectorum-like α-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors. Angew. Chem. Int. Ed. 56, 1125–1130 (2017)

    Google Scholar 

  50. W. Zilong, Z. Zhu, J. Qiu, S. Yang, High performance flexible solid-state asymmetric supercapacitors from MnO2/ZnO core–shell nanorods//specially reduced graphene oxide. J. Mater. Chem. C 2, 1331–1336 (2014)

    Google Scholar 

  51. S. Zhai, H.E. Karahan, L. Wei, X. Chen, Z. Zhou, X. Wang, Y. Chen, Hydrothermal assembly of micro-nano-integrated core-sheath carbon fibers for high-performance all-carbon micro-supercapacitors. Energy Storage Mater. 9, 221–228 (2017)

    Google Scholar 

  52. C. Choi, H.J. Sim, G.M. Spinks, X. Lepró, R.H. Baughman, S.J. Kim, Elastomeric and dynamic MnO2/CNT core–shell structure coiled yarn supercapacitor. Adv. Energy Mater. 6, 1502119 (2016)

    Google Scholar 

  53. X. Li, X. Deng, Q. Li, S. Huang, K. **ao, Z. Liu, Y. Tong, Hierarchical double-shelled poly(3,4-ethylenedioxythiophene) and MnO2 decorated Ni nanotube arrays for durable and enhanced energy storage in supercapacitors. Electrochim. Acta 264, 46–52 (2018)

    CAS  Google Scholar 

  54. P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li, P. Qiang, M. Ebrahimi, W. Mai, C.P. Wong, Z.L. Wang, Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 14, 731–736 (2014)

    CAS  Google Scholar 

  55. H. Zhang, D. **ao, Q. Li, Y. Ma, S. Yuan, L. **e, C. Chen, C. Lu, Porous NiCo2O4 nanowires supported on carbon cloth for flexible asymmetric supercapacitor with high energy density. J. Energy Chem. 27, 195–202 (2018)

    Google Scholar 

  56. W. Liu, K. Feng, Y. Zhang, T. Yu, L. Han, G. Lui, M. Li, G. Chiu, P. Fung, A. Yu, Hair-based flexible knittable supercapacitor with wide operating voltage and ultra-high rate capability. Nano Energy 34, 491–499 (2017)

    CAS  Google Scholar 

  57. Y. Liu, X. Miao, J. Fang, X. Zhang, S. Chen, W. Li, W. Feng, Y. Chen, W. Wang, Y. Zhang, Layered-MnO2 nanosheet grown on nitrogen-doped graphene template as a composite cathode for flexible solid-state asymmetric supercapacitor. ACS Appl. Mater. Interfaces 8, 5251–5260 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (No. 2017YFA0204600) and the Fundamental Research Funds for the Central Universities (No. 22120200228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenglong Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1687 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Fu, N., Wang, X. et al. A high energy density flexible symmetric supercapacitor based on Al-doped MnO2 nanosheets @ carbon cloth electrode materials. J Mater Sci: Mater Electron 31, 16027–16036 (2020). https://doi.org/10.1007/s10854-020-04165-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04165-1

Navigation