Log in

The potentials of TiO2 nanocatalyst on HMX thermolysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Even though HMX is one of the most powerful highly explosive materials; HMX-based propellants demonstrated complexity of burning rate control as well as high pressure exponent (n). In addition, HMX is insensitive to common catalyst. TiO2 can offer novel catalyzing ability for HMX. Highly-crystalline, mono-dispersed TiO2 NPs of 5.0 nm particle size with proper surface area (26.87 ± 0. 36 m2/g) were fabricated using hydrothermal processing. TiO2 NPs were re-dispersed in organic solvent and effectively-integrated into HMX via co-precipitation technique; the impact of TiO2 NPs on HMX thermal behavior was investigated using DSC and TGA. TiO2 NPs exposed superior catalytic performance; the endothermic phase change of HMX at 187 °C was decreased by 43.3%. The main exothermic decomposition peak was decreased by 10 °C with enhanced total heat release by 46.7%. The catalytic performance of TiO2 NPs could be ascribed to the release of active surface ȮH radicals that could induce HMX decomposition via hydrogen abstraction. Furthermore, TiO2 NPs could adsorb evolved NO2 on its surface with surge in total heat release in condensed phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Meyer, J. Kohler, A. Homburg (eds.), Explosives, 6th edn. (Wiley, Weinheim, 2007)

    Google Scholar 

  2. F. Monteil-Rivera et al., Dissolution of a new explosive formulation containing TNT and HMX: comparison with octol. J. Hazard. Mater. 174(1), 281–288 (2010)

    CAS  Google Scholar 

  3. N. Kubota (ed.), Propellants and Explosives Thermochemical Aspects of Combustion (Wiley-VCH, Weinheim, 2002)

    Google Scholar 

  4. S. Elbasuney, A. Fahd, H.E. Mostafa, Combustion characteristics of extruded double base propellant based on ammonium perchlorate/aluminum binary mixture. Fuel 208(Supplement C), 296–304 (2017)

    CAS  Google Scholar 

  5. S. Elbasuney et al., Chemical stability, thermal behavior, and shelf life assessment of extruded modified double-base propellants. Def. Technol. 14(1), 70–76 (2018)

    Google Scholar 

  6. E.S. Kim, V. Yang, Y.C. Liau, Modeling of HMX/GAP pseudo-propellant combustion. Combust. Flame 131(3), 227–245 (2002)

    CAS  Google Scholar 

  7. V.E. Zarko, A.A. Gromov (eds.), Energetic Nanomaterials Synthesis, Characterization, and Application (Elsevier, Amsterdam, 2016)

    Google Scholar 

  8. Q.-L. Yan et al., Combustion mechanism of double-base propellant containing nitrogen heterocyclic nitroamines (I): the effect of heat and mass transfer to the burning characteristics. Combust. Flame 156(3), 633–641 (2009)

    CAS  Google Scholar 

  9. K.V. Meredith, M.L. Gross, M.W. Beckstead, Laser-induced ignition modeling of HMX. Combust. Flame 162(2), 506–515 (2015)

    CAS  Google Scholar 

  10. L. Patidar, M. Khichar, S.T. Thynell, Identification of initial decomposition reactions in liquid-phase HMX using quantum mechanics calculations. Combust. Flame 188, 170–179 (2018)

    CAS  Google Scholar 

  11. Q.-L. Yan et al., Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Prog. Energy Combust. Sci. 57, 75–136 (2016)

    Google Scholar 

  12. R. Liu, P.W. Chen, Modeling ignition prediction of HMX-based polymer bonded explosives under low velocity impact. Mech. Mater. 124, 106–117 (2018)

    Google Scholar 

  13. A. Singh et al., Thermal decomposition and kinetics of plastic bonded explosives based on mixture of HMX and TATB with polymer matrices. Def. Technol. 13(1), 22–32 (2017)

    Google Scholar 

  14. X.-G. Wu et al., Combustion efficiency and pyrochemical properties of micron-sized metal particles as the components of modified double-base propellant. Acta Astronaut. 68(7), 1098–1112 (2011)

    CAS  Google Scholar 

  15. J.J. **ao et al., Study on structure, sensitivity and mechanical properties of HMX and HMX-based PBXs with molecular dynamics simulation. Comput. Theor. Chem. 999, 21–27 (2012)

    CAS  Google Scholar 

  16. A.N. Pivkina et al., Chapter nine—catalysis of HMX decomposition and combustion: defect chemistry approach, in Energetic Nanomaterials, ed. by V.E. Zarko, A.A. Gromov (Elsevier, Amsterdam, 2016), pp. 193–230

    Google Scholar 

  17. Y. Wang et al., Combustion synthesis of La0.8Sr0.2MnO3 and its effect on HMX thermal decomposition. Chin. J. Chem. Eng. 18(3), 397–401 (2010)

    Google Scholar 

  18. S. Elbasuney, Sustainable steric stabilization of colloidal titania nanoparticles. Appl. Surf. Sci. 409, 438–447 (2017)

    CAS  Google Scholar 

  19. M.A. Elsayed, M. Gobara, S. Elbasuney, Instant synthesis of bespoke nanoscopic photocatalysts with enhanced surface area and photocatalytic activity for wastewater treatment. J. Photochem. Photobiol. A 344, 121–133 (2017)

    CAS  Google Scholar 

  20. R. Liu et al., Dynamic vacuum stability test method and investigation on vacuum thermal decomposition of HMX and CL-20. Thermochim. Acta 537, 13–19 (2012)

    CAS  Google Scholar 

  21. H. Khojasteh et al., Synthesis, characterization and photocatalytic activity of PdO/TiO2 and Pd/TiO2 nanocomposites. J. Mater. Sci.: Mater. Electron. 27(2), 1261–1269 (2016)

    CAS  Google Scholar 

  22. H. Safajou et al., Enhanced photocatalytic degradation of dyes over graphene/Pd/TiO2 nanocomposites: TiO2 nanowires versus TiO2 nanoparticles. J. Colloid Interface Sci. 498, 423–432 (2017)

    CAS  Google Scholar 

  23. A. Abbasi et al., Photo-degradation of methylene blue: photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites. J. Mater. Sci.: Mater. Electron. 27(5), 4800–4809 (2016)

    CAS  Google Scholar 

  24. T. Gholami et al., Photocatalytic degradation of methylene blue on TiO2@SiO2 core/shell nanoparticles: synthesis and characterization. J. Mater. Sci.: Mater. Electron. 26(8), 6170–6177 (2015)

    CAS  Google Scholar 

  25. H. Safardoust-Hojaghan, M. Salavati-Niasari, Degradation of methylene blue as a pollutant with N-doped graphene quantum dot/titanium dioxide nanocomposite. J. Clean. Prod. 148, 31–36 (2017)

    CAS  Google Scholar 

  26. A. Rostami-Vartooni et al., Photocatalytic degradation of azo dyes by titanium dioxide supported silver nanoparticles prepared by a green method using Carpobrotus acinaciformis extract. J. Alloys Compd. 689, 15–20 (2016)

    CAS  Google Scholar 

  27. M. Sabet, M. Salavati-Niasari, O. Amiri, Using different chemical methods for deposition of CdS on TiO2 surface and investigation of their influences on the dye-sensitized solar cell performance. Electrochim. Acta 117, 504–520 (2014)

    CAS  Google Scholar 

  28. N. Mir, M. Salavati-Niasari, Preparation of TiO2 nanoparticles by using tripodal tetraamine ligands as complexing agent via two-step sol–gel method and their application in dye-sensitized solar cells. Mater. Res. Bull. 48(4), 1660–1667 (2013)

    CAS  Google Scholar 

  29. M. Masjedi et al., Effect of Schiff base ligand on the size and the optical properties of TiO2 nanoparticles. Superlattices Microstruct. 62, 30–38 (2013)

    CAS  Google Scholar 

  30. N. Mir, M. Salavati-Niasari, Effect of tertiary amines on the synthesis and photovoltaic properties of TiO2 nanoparticles in dye sensitized solar cells. Electrochim. Acta 102, 274–281 (2013)

    CAS  Google Scholar 

  31. O. Amiri et al., Stable plasmonic-improved dye sensitized solar cells by silver nanoparticles between titanium dioxide layers. Electrochim. Acta 152, 101–107 (2015)

    CAS  Google Scholar 

  32. H. Hou et al., General strategy for fabricating thoroughly mesoporous nanofibers. J. Am. Chem. Soc. 136(48), 16716–16719 (2014)

    CAS  Google Scholar 

  33. H. Hou et al., Superior thoroughly mesoporous ternary hybrid photocatalysts of TiO2/WO3/gC3N4 nanofibers for visible-light-driven hydrogen evolution. J. Mater. Chem. A 4(17), 6276–6281 (2016)

    CAS  Google Scholar 

  34. H. Hou et al., Highly efficient photocatalytic hydrogen evolution in ternary hybrid TiO2/CuO/Cu thoroughly mesoporous nanofibers. ACS Appl. Mater. Interfaces 8(31), 20128–20137 (2016)

    CAS  Google Scholar 

  35. H. Hou et al., BiVO4@TiO2 core–shell hybrid mesoporous nanofibers towards efficient visible-light-driven photocatalytic hydrogen production. J. Mater. Chem. C 7(26), 7858–7864 (2019)

    CAS  Google Scholar 

  36. S. Elbasuney, M. Yehia, Ammonium perchlorate encapsulated with TiO2 nanocomposite for catalyzed combustion reactions. J. Inorg. Organomet. Polym. Mater. 29(4), 1349–1357 (2019)

    CAS  Google Scholar 

  37. Z.-X. Wei et al., Combustion synthesis and effect of LaMnO3 and LaOCl powder mixture on HMX thermal decomposition. Thermochim. Acta 499(1), 111–116 (2010)

    CAS  Google Scholar 

  38. S. Elbasuney, M. Gobara, M. Yehia, Ferrite nanoparticles: synthesis, characterization, and catalytic activity evaluation for solid rocket propulsion systems. J. Inorg. Organomet. Polym. Mater. 29(3), 721–729 (2019)

    CAS  Google Scholar 

  39. R. Dubey et al., Synthesis, characterization and catalytic behavior of Cu nanoparticles on the thermal decomposition of AP, HMX, NTO and composite solid propellants, Part 83. Thermochim. Acta 549, 102–109 (2012)

    CAS  Google Scholar 

  40. J. Wei et al., 0D Cu(II) and 1D mixed-valence Cu(I)/Cu(II) coordination compounds based on mixed ligands: syntheses, structures and catalytic thermal decomposition for HMX. Inorg. Chem. Commun. 30, 13–16 (2013)

    CAS  Google Scholar 

  41. J.-S. Lee, C.-K. Hsu, C.-L. Chang, A study on the thermal decomposition behaviors of PETN, RDX, HNS and HMX. Thermochim. Acta 392–393, 173–176 (2002)

    Google Scholar 

  42. X. Wang, Y. Li, Selected-control hydrothermal synthesis of α-and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124(12), 2880–2881 (2002)

    CAS  Google Scholar 

  43. S. Elbasuney, M. Yehia, Thermal decomposition of ammonium perchlorate catalyzed with CuO nanoparticles. Def. Technol. 15(6), 868–874 (2019)

    Google Scholar 

  44. S. Elbasuney, Dispersion characteristics of dry and colloidal nano-titania into epoxy resin. Powder Technol. 268, 158–164 (2014)

    CAS  Google Scholar 

  45. S. Elbasuney, Surface engineering of layered double hydroxide (LDH) nanoparticles for polymer flame retardancy. Powder Technol. 277, 63–73 (2015)

    CAS  Google Scholar 

  46. S. Elbasuney, Continuous hydrothermal synthesis of AlO(OH) nanorods as a clean flame retardant agent. Particuology 22, 66–71 (2015)

    CAS  Google Scholar 

  47. S. Elbasuney, Novel multi-component flame retardant system based on nanoscopic aluminium-trihydroxide (ATH). Powder Technol. 305, 538–545 (2017)

    CAS  Google Scholar 

  48. S. Elbasuney, Novel colloidal molybdenum hydrogen bronze (MHB) for instant detection and neutralization of hazardous peroxides. TrAC Trends Anal. Chem. 102, 272–279 (2018)

    CAS  Google Scholar 

  49. P. Savage et al., Reactions at supercritical conditions: applications and fundamentals. AIChE J 41(7), 1723–1778 (1995)

    CAS  Google Scholar 

  50. K.S. Morley et al., Clean preparation on nanoparticulate metals in porous supports: a supercritical route. J. Chem. Mater. 12, 1898–1905 (2002)

    CAS  Google Scholar 

  51. H. Hobbs, Biocatalysis in 'green solvents, in Chemistry (University of Nottingham, Notttingham, 2006)

  52. S. Elbasuney, Novel colloidal nanothermite particles (MnO2/Al) for advanced highly energetic systems. J. Inorg. Organomet. Polym. Mater. 28(5), 1793–1800 (2018)

    CAS  Google Scholar 

  53. S. Elbasuney et al., Infrared signature of novel super-thermite (Fe2O3/Mg) fluorocarbon nanocomposite for effective countermeasures of infrared seekers. J. Inorg. Organomet. Polym. Mater. 28(5), 1718–1727 (2018)

    CAS  Google Scholar 

  54. S. Elbasuney et al., Super-thermite (Al/Fe2O3) fluorocarbon nanocomposite with stimulated infrared thermal signature via extended primary combustion zones for effective countermeasures of infrared seekers. J. Inorg. Organomet. Polym. Mater. 28, 2231–2240 (2018)

    CAS  Google Scholar 

  55. A. Bouvy, A. Opstaele (eds.), Waterbrone Coating and Additives (Royal Chemical Society, London, 1995)

    Google Scholar 

  56. S. Voyutsky (ed.), Colloid Chemistry (Mir Publisher, Moscow, 1978)

    Google Scholar 

  57. R.J. Hunter (ed.), Zeta Potential in Colloid Science (Academic Press, New York, 1981)

    Google Scholar 

  58. S. Elbasuney et al., Stabilized super-thermite colloids: a new generation of advanced highly energetic materials. Appl. Surf. Sci. 419, 328–336 (2017)

    CAS  Google Scholar 

  59. J. Lee et al., Titanium dioxide nanoparticles oral exposure to pregnant rats and its distribution. Part. Fibre Toxicol 16(1), 31 (2019)

    Google Scholar 

  60. A.C.S. de la Vega et al., Nanosized titanium dioxide UV filter increases mixture toxicity when combined with parabens. Ecotoxicol. Environ. Saf. 184, 109565 (2019)

    Google Scholar 

  61. L.W. Zhang, N.A. Monteiro-Riviere, Toxicity assessment of six titanium dioxide nanoparticles in human epidermal keratinocytes. Cutan. Ocular Toxicol 38(1), 66–80 (2019)

    CAS  Google Scholar 

  62. M. Abd Elkodous et al., Layer-by-layer preparation and characterization of recyclable nanocomposite (CoxNi1xFe2O4; X = 0.9/SiO2/TiO2). J. Mater. Sci.: Mater. Electron. 30(9), 8312–8328 (2019)

    Google Scholar 

  63. Y. Tang et al., Measurement of SnO2 nanoparticles coating on titanium dioxide nanotube arrays using grazing-incidence X-ray diffraction, in Characterization of Minerals, Metals, and Materials 2019 (Springer, Berlin, 2019), pp. 703–711

  64. H. Fernando et al., Synthesis, characterization and antimicrobial activity of garcinol coated titanium dioxide nanoparticles, in Proceedings of Annual Scientific Sessions of Faculty of Medical Sciences (2019)

  65. L. Guo et al., In situ generated plasmonic silver nanoparticle-sensitized amorphous titanium dioxide for ultrasensitive photoelectrochemical sensing of formaldehyde. ACS Sens. 4(10), 2724–2729 (2019)

    CAS  Google Scholar 

  66. N. El-Shafai et al., Graphene oxide decorated with zinc oxide nanoflower, silver and titanium dioxide nanoparticles: fabrication, characterization, DNA interaction, and antibacterial activity. RSC Adv. 9(7), 3704–3714 (2019)

    CAS  Google Scholar 

  67. H. Gao et al., The efficient biogeneration of Ag and NiO nanoparticles from VPLE and a study of the anti-diabetic properties of the extract. RSC Adv. 10(5), 3005–3012 (2020)

    CAS  Google Scholar 

  68. M.A. Maksoud et al., Incorporation of Mn2+ into cobalt ferrite via sol–gel method: insights on induced changes in the structural, thermal, dielectric, and magnetic properties. J. Sol-Gel. Sci. Technol. 90(3), 631–642 (2019)

    Google Scholar 

  69. A.W. Jatoi, I.S. Kim, Q.-Q. Ni, Cellulose acetate nanofibers embedded with AgNPs anchored TiO2 nanoparticles for long term excellent antibacterial applications. Carbohydr. Polym. 207, 640–649 (2019)

    CAS  Google Scholar 

  70. W.R. Thalgaspitiya et al., A novel, mesoporous molybdenum doped titanium dioxide/reduced graphene oxide composite as a green, highly efficient solid acid catalyst for acetalization. Dalton Trans. 49, 3786–3795 (2020)

    CAS  Google Scholar 

  71. A. Nurfadillah, M. Nasir, R.A. Lubis, Synthesis and characterization of sulfonated PVDF TiO2-natural zeolite nanocomposites membrane, in Key Engineering Materials (Trans Tech Publ, 2019)

  72. O. Fichera et al., Characterization of water-based paints containing titanium dioxide or carbon black as manufactured nanomaterials before and after atomization. Appl. Nanosci. 9(4), 515–528 (2019)

    CAS  Google Scholar 

  73. A.I. El-Batal et al., Nystatin-mediated bismuth oxide nano-drug synthesis using gamma rays for increasing the antimicrobial and antibiofilm activities against some pathogenic bacteria and Candida species. RSC Adv. 10(16), 9274–9289 (2020)

    CAS  Google Scholar 

  74. M. Srinivasan et al., Green synthesis and characterization of titanium dioxide nanoparticles (TiO2 NPs) using Sesbania grandiflora and evaluation of toxicity in zebrafish embryos. Process Biochem. 80, 197–202 (2019)

    CAS  Google Scholar 

  75. H. Pouran et al., Assessment of ATR-FTIR spectroscopy with multivariate analysis to investigate the binding mechanisms of Ag and TiO2 nanoparticles to Chelex®-100 or Metsorb™ for the DGT technique. Anal. Methods (2020). https://doi.org/10.1039/C9AY02458A

    Article  Google Scholar 

  76. T. Munir et al., Impact of silver dopant on structural and optical properties of TiO2 nanoparticles. DJNB. 14(2), 279–284 (2019).

    Google Scholar 

  77. G.S. El-Sayyad et al., Merits of photocatalytic and antimicrobial applications of gamma-irradiated CoxNi1xFe2O4/SiO2/TiO2; x = 09 nanocomposite for pyridine removal and pathogenic bacteria/fungi disinfection: implication for wastewater treatment. RSC Adv. 10(9), 5241–5259 (2020)

    CAS  Google Scholar 

  78. M. Maksoud et al., Controllable synthesis of Co1−xMxFe2O4 nanoparticles (M= Zn, Cu, and Mn; x= 0.0 and 0.5) by cost-effective sol-gel approach: analysis of structure, elastic, thermal, and magnetic properties. J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03518-0.pdf

    Article  Google Scholar 

  79. M. Arulprakasajothi et al., Heat transfer study of water-based nanofluids containing titanium oxide nanoparticles. Mater. Today: Proc. 2(4–5), 3648–3655 (2015)

    Google Scholar 

  80. H. Lee, S. **, S. Yim, Titanium oxide nanoparticle-embedded mesoporous manganese oxide microparticles for supercapacitor electrodes. J. Phys. Chem. Solids 138, 109264 (2020)

    CAS  Google Scholar 

  81. W. Sun et al., Synthesis and enhanced electrorheological properties of TS-1/titanium oxide core/shell nanocomposite. Ind. Eng. Chem. Res. 59(3), 1168–1182 (2020)

    CAS  Google Scholar 

  82. S. Elbasuney et al., Surface modified colloidal silica nanoparticles: Novel aspect for complete identification of explosive materials. Talanta 211, 120695 (2020)

    CAS  Google Scholar 

  83. F.M. Mosallam et al., Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microb Pathog. 122, 108–116 (2018)

    CAS  Google Scholar 

  84. M.A. Maksoud et al., Synthesis and characterization of metals-substituted cobalt ferrite [MxCo(1x)Fe2O4;(M= Zn, Cu and Mn; x= 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater. Sci. Eng.: C 92, 644–656 (2018)

    Google Scholar 

  85. A. Ashour et al., Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151 (2018)

    CAS  Google Scholar 

  86. M. Zhang et al., What occurs in colloidal gas aphron-induced separation of titanium dioxide nanoparticles? Particle fate analysis by tracking technologies. Sci. Total Environ. 716, 137104 (2020)

    CAS  Google Scholar 

  87. J.H. Kim et al., Mussel adhesive protein-coated titanium oxide nanoparticles for effective NO removal from versatile substrates. Chem. Eng. J. 378, 122164 (2019)

    Google Scholar 

  88. Q. Wang et al., Superhydrophobic paper fabricated via nanostructured titanium dioxide-functionalized wood cellulose fibers. J. Mater. Sci. 55(16), 7084–7094 (2020)

    CAS  Google Scholar 

  89. H. Lee et al., Titanium dioxide modification with cobalt oxide nanoparticles for photocatalysis. J. Ind. Eng. Chem. 32, 259–263 (2015)

    CAS  Google Scholar 

  90. J.J.-I. Yoh et al., Test-based thermal explosion model for HMX. Proc. Combust. Inst. 31(2), 2353–2359 (2007)

    Google Scholar 

  91. C.M. Tarver, T.D. Tran, Thermal decomposition models for HMX-based plastic bonded explosives. Combust. Flame 137(1), 50–62 (2004)

    CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sherif Elbasuney or Gharieb S. El-Sayyad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbasuney, S., El-Sayyad, G.S. The potentials of TiO2 nanocatalyst on HMX thermolysis. J Mater Sci: Mater Electron 31, 14930–14940 (2020). https://doi.org/10.1007/s10854-020-04054-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04054-7

Navigation