Log in

Microwave absorption and infrared stealth performance of reduced graphene oxide-wrapped Al flake

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel Al@reduced graphene oxide (Al@RGO) composite was designed and synthesized by a one-step hydrothermal method. We investigated the effect of the graphene on the microwave absorbing properties and infrared emissivity of composites. The crystal structure, microscopic morphology, infrared emissivity and electromagnetic parameters of the prepared samples were characterized by XRD, FESEM, TEM, XPS, dual band infrared emissometer and vector network analyzer. TEM and SEM show that the thin Al sheet is uniformly wrapped by RGO with a crumpled surface. Functionalized RGO and surface cation-modified Al sheets are tightly compounded through an electrostatic interaction. The oxygen content and defect from RGO as polarization center endows the material with enhanced molecular polarization and dipole polarization effect. The Al sheet is well coated with RGO, enhancing interface polarization and impedance matching. The minimum reflection loss (RL) of optimized Al@RGO composites is − 46.11 dB at 13.68 GHz under the coating thickness of only 2 mm. The bandwidth below − 10 dB can reach 4.88 GHz (11.52–16.4 GHz). Al sheet is a suitable base material for both microwave absorption and infrared stealth. The Al@RGO composites exhibit excellent infrared stealth ability, and their lowest infrared emissivity is 0.62. Thus, Al@RGO composites show potential application for both electromagnetic wave absorption and infrared stealth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H.J. Wu, D. Lan, B. Li, L.M. Zhang, Y. Fu, Y. Zhang, H. **ng, High-entropy alloy@air@Ni–NiO core-shell microspheres for electromagnetic absorption applications. Compos. Part B—Eng. 179, 107524 (2019). https://doi.org/10.1016/j.compositesb.2019.107524

    Article  CAS  Google Scholar 

  2. A.P. Alegaonkar, P.S. Alegaonkar, Nano-carbon/polymer composites for electromagnetic shielding, structural mechanical and field emission applications. Thermoset Compos.: Prep. Prop. Appl. 38, 128 (2018). https://doi.org/10.21741/9781945291876

    Article  Google Scholar 

  3. A.P. Alegaonkar, P.S. Alegaonkar, Nanocarbons: Preparation, Assessments, and Applications in Structural Engineering, Spintronics, Gas Sensing, EMI Shielding, and Cloaking in X-band. Nanocarbon and Its Composites. Woodhead Publishing, Cambride, 2019, 171–285. https://doi.org/10.1016/B978-0-08-102509-3.00007-9

    Book  Google Scholar 

  4. H.S. Liang, J.L. Liu, Y. Zhang, L. Luo, H.J. Wu, Ultra-thin broccoli-like SCFs@TiO2 one-dimensional electromagnetic wave absorbing material. Compos. Part B—Eng. 179, 107507 (2019). https://doi.org/10.1016/j.compositesb.2019.107507

    Article  CAS  Google Scholar 

  5. S. Acharya, C.S. Gopinath, P. Alegaonkar et al., Enhanced microwave absorption property of reduced graphene oxide (RGO)–strontium hexaferrite (SF)/poly (vinylidene) fluoride (PVDF). Diam. Relat. Mater. 89, 28–34 (2018). https://doi.org/10.1016/j.diamond.2018.07.024

    Article  CAS  Google Scholar 

  6. R.W. Shu, H.L. **ng, X.L. Ji, D.X. Tan, Y. Gan, Preparation, microwave absorption and infrared emissivity of Ni-doped ZnO/Al powders by coprecipitation method in the GHz range. Nano 11, 1650047 (2016). https://doi.org/10.1142/S1793292016500478

    Article  CAS  Google Scholar 

  7. S. Acharya, J. Ray, T.U. Patro et al., Microwave absorption properties of reduced graphene oxide strontium hexaferrite/poly (methyl methacrylate) composites. Nanotechnology 29, 115605 (2018)

    Article  Google Scholar 

  8. S. Acharya, P. Alegaonkar, S. Datar, Effect of formation of heterostructure of SrAl4Fe8O19/RGO/PVDF on the microwave absorption properties of the composite. Chem. Eng. J. 374, 144–154 (2019). https://doi.org/10.1016/j.cej.2019.05.078

    Article  CAS  Google Scholar 

  9. Z.Y. Shen, H.L. **ng, H. Wang, H.X. Jia, Y. Liu, A.J. Chen, P.Y. Yang, Synthesis and enhanced electromagnetic absorption properties of co-doped CeO2/RGO nanocomposites. J. Alloys Compd. 753, 28–34 (2018). https://doi.org/10.1016/j.jallcom.2018.04.195

    Article  CAS  Google Scholar 

  10. Y.L. Zhang, X.X. Wang, M.S. Cao, N.A.N.O. Res, Confinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 3, 1426–1436 (2018). https://doi.org/10.1007/s12274-017-1758-1

    Article  CAS  Google Scholar 

  11. Y.P. Wang, Z. Peng, W. Jiang, Controlled synthesis of Fe3O4@SnO2/RGO nanocomposite for microwave absorption enhancement. Ceram. Int. 42, 10682–10689 (2016). https://doi.org/10.1016/j.ceramint.2016.03.180

    Article  CAS  Google Scholar 

  12. L. Yuan, X.L. Weng, W.F. Du, J.L. **e, L.J. Deng, Optical and magnetic properties of Al/Fe3O4 core–shell low infrared emissivity pigments. J. Alloys Compd. 583, 492–497 (2014). https://doi.org/10.1016/j.jallcom.2013.08.133

    Article  CAS  Google Scholar 

  13. L. Yuan, J. Hu, X.L. Weng, Q.Y. Zhang, L.J. deng, Galvanic displacement synthesis of Al/Ni core–shell pigments and their low infrared emissivity application. J. Alloys Compd. 670, 275–280 (2016). https://doi.org/10.1016/j.jallcom.2016.02.028

    Article  CAS  Google Scholar 

  14. M.Y. Shi, C. Xu, Z.H. Yang, J. Liang, L. Wang, S.J. Tan, G.Y. Xu, Achieving good infrared-radar compatible stealth property on metamaterial-based absorber by controlling the floating rate of Al type infrared coating. J. Alloys Compd. 764, 314–322 (2018). https://doi.org/10.1016/j.jallcom.2018.06.093

    Article  CAS  Google Scholar 

  15. Y.F. Liu, J.L. **e, M. Luo, B. Peng, L.J. Deng, Synthesis and characterization of magnetic Al/NiO composite pigments with low infrared emissivity. Mater. Sci. Forum. 898, 1561–1568 (2017). https://doi.org/10.4028/www.scientific.net/MSF.898.1561

    Article  Google Scholar 

  16. K.Z. Wang, C.X. Wang, Y.J. Yin, K.L. Chen, Modification of Al pigment with graphene for infrared/visual stealth compatible fabric coating. J. Alloys Compd. 690, 741–748 (2017). https://doi.org/10.1016/j.jallcom.2016.08.171

    Article  CAS  Google Scholar 

  17. X.X. Yan, G.Y. Xu, Corrosion and mechanical properties of polyurethane/Al composite coatings with low infrared emissivity. J. Alloys Compd. 491, 649–653 (2010). https://doi.org/10.1016/j.jallcom.2009.11.030

    Article  CAS  Google Scholar 

  18. X.G. Huang, W.F. Rao, Y.Y. Chen, W.H. Ding, H.L. Zhu, M.X. YU, J. Chen, Q.T. Zhang, Infrared emitting properties and environmental stability performance of aluminum/polymer composite coating. J. Mater. Sci.: Mater. Electron. 27, 5543–5548 (2016). https://doi.org/10.1007/s10854-016-4458-9

    Article  CAS  Google Scholar 

  19. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Aleany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010). https://doi.org/10.1021/nn1006368

    Article  CAS  Google Scholar 

  20. M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 158, 134–140 (2000). https://doi.org/10.1016/S0169-4332(99)00601-7

    Article  CAS  Google Scholar 

  21. M. Fathy, A. Gomaa, F.A. Taher, M.M. EI-Fass, A.E.-H.B. Kashyout, Optimizing the preparation parameters of GO and rGO for large-scale production. J. Mater. Sci. 51, 5664–5675 (2016). https://doi.org/10.1007/s10853-016-9869-8

    Article  CAS  Google Scholar 

  22. M.K. Han, X.W. Yin, L. Kong, M. LI, W.Y. Duan, L.T. Zhang, L.F. Cheng, Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2, 16403–16409 (2014). https://doi.org/10.1039/c4ta03033h

    Article  CAS  Google Scholar 

  23. M.Y. Yang, L. Wang, M. Li, T.J. Hou, Y.Y. Li, Structural stability and O2 dissociation on nitrogen-doped graphene with transition metal atoms embedded: a first-principles study. AIP Adv. 5, 067136 (2015). https://doi.org/10.1063/1.4922841

    Article  CAS  Google Scholar 

  24. Y. **, J.M. Yan, Z.L. Wang, H.L. Wang, Q. Jiang, Ag0.1-Pd0.9/rGO: an efficient catalyst for hydrogen generation from formic acid/sodium formate. J. Mater. Chem. A. 1, 12188–12191 (2013). https://doi.org/10.1039/C3TA12724A

    Article  CAS  Google Scholar 

  25. J.Y. Cai, W.J. Liu, Z.H. Li, One-pot self-assembly of Cu2O/RGO composite aerogel for aqueous photocatalysis. Appl. Surf. Sci. 358, 146–151 (2015). https://doi.org/10.1016/j.apsusc.2015.08.021

    Article  CAS  Google Scholar 

  26. K.L. Zhang, Y.H. Xu, Y. Lu, Y.C. Zhu, Y.Y. Qian, D.F. Wang, J.B. Zhou, N. Lin, Y.T. Qian, A graphene oxide-wrapped bipyramidal sulfur@polyaniline core–shell structure as a cathode for Li–S batteries with enhanced electrochemical performance. J. Mater. Chem. A. 4, 6404–6410 (2016). https://doi.org/10.1039/C6TA01118G

    Article  CAS  Google Scholar 

  27. Y.F. Pan, G.S. Wang, Y.H. Yue, Fabrication of Fe3O4@SiO2@RGO nanocomposites and their excellent absorption properties with low filler content. RSC Adv. 5, 71718–71723 (2015). https://doi.org/10.1039/C5RA13315G

    Article  CAS  Google Scholar 

  28. M. Laroussl, J.R. Roth, Numerical calculation of the reflection, absorption, and transmission of microwaves by a nonuniform plasma slab. IEEE Trans. Plasma Sci. 21, 366–372 (1993). https://doi.org/10.1109/27.234562

    Article  Google Scholar 

  29. B. Zhao, G. Shao, B.B. Fan, W.Y. Zhao, Y.Q. Chen, R. Zhang, Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties. RSC Adv. 5, 9806–9814 (2015). https://doi.org/10.1039/c4ra15411h

    Article  CAS  Google Scholar 

  30. D.Z. Chen, G.S. Wang, S. He, J. Liu, L. Guo, M.S. Cao, Controllable fabrication of mono-dispersed RGO–hematite nanocomposites and their enhanced wave absorption properties. J. Mater. Chem. A. 1, 5996–6003 (2013). https://doi.org/10.1039/C3TA10664K

    Article  CAS  Google Scholar 

  31. H.G. Wang, F.B. Meng, F. Huang, C.F. **g, Y. Li, W. Wei, Z.W. Zhou, Interface modulating CNTs@PANi hybrids by controlled unzip** of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 11, 12142–12153 (2019). https://doi.org/10.1021/acsami.9b01122

    Article  CAS  Google Scholar 

  32. Y. Qin, Y. Zhang, N. Qi, Q.Z. Wang, X.J. Zhang, Y. Li, Preparation of graphene aerogel with high mechanical stability and microwave absorption ability via combining surface support of metallic-CNTs and interfacial cross-linking by magnetic nanoparticles. ACS Appl. Mater. Interfaces 11, 10409–10417 (2019). https://doi.org/10.1021/acsami.8b22382

    Article  CAS  Google Scholar 

  33. H.S. Liang, J.L. Liu, Y. Zhang, L. Luo, H.J. Wu, Ultra-thin broccoli-like SCFs@TiO2 one-dimensional electromagnetic wave absorbing material. Compos. Part B: Eng. 178, 107507 (2019). https://doi.org/10.1016/j.compositesb.2019.107507

    Article  CAS  Google Scholar 

  34. T. Bruce, P.J. Draine, Flatau, The discrete dipole approximation for periodic targets I. Theory and tests. J. Opt. Soc. Am. A 25, 2693–2703 (2008). https://doi.org/10.1364/JOSAA.25.002693

    Article  Google Scholar 

  35. L.L. **ong, M. Yu, J.H. Liu, S.M. Li, B. Xue, Preparation and evaluation of the microwave absorption properties of template-free graphene foam-supported Ni nanoparticles. RSC Adv. 7, 14733–14741 (2017). https://doi.org/10.1039/C6RA27435H

    Article  CAS  Google Scholar 

  36. L. Liu, N. He, T. Wu, P.B. Hu, G.X. Tong, Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability, and microwave absorption properties. Chem. Eng. J. 355, 103–108 (2019). https://doi.org/10.1016/j.cej.2018.08.131

    Article  CAS  Google Scholar 

  37. D. Lan, M. Qin, J.L. Liu, G.L. Wu, Y. Zhang, H.J. Wu, Novel binary cobalt nickel oxide hollowed-out spheres for electromagnetic absorption applications. Chem. Eng. J. 382, 122797 (2020). https://doi.org/10.1016/j.cej.2019.122797

    Article  CAS  Google Scholar 

  38. P.P. Kuzhir, A.G. Paddubskaya, M.V. Shuba, S.A. Maksimenko, A. Celzard, V. Fierro, G. Amaral-Labat, A. Pizzi, G. Valušis, J. Macutkevic, M. Ivanov, J. Banys, S. Bistarelli, A. Cataldo, M. Mastrucci, F. Micciulla, I. Sacco, E. Stefanutti, S. Bellucci, Electromagnetic shielding efficiency in Ka-band: carbon foam versus epoxy/carbon nanotube composites. J Nanophotonics 6, 061715 (2012). https://doi.org/10.1117/1.JNP.6.061715

    Article  CAS  Google Scholar 

  39. P.H. Fang, Cole–cole diagram and the distribution of relaxation times. J. Chem. Phys. 42, 3411–3413 (1965). https://doi.org/10.1063/1.1695743

    Article  CAS  Google Scholar 

  40. M. Qin, D. Lan, J.L. Liu, H.S. Liang, L.M. Zhang, H. **ng, T.T. Xu, H.J. Wu, Synthesis of single-component metal oxides with controllable multi‐shelled structure and their morphology‐related applications. Chem. Rec. (2019). https://doi.org/10.1002/tcr.201900017

    Article  Google Scholar 

  41. B. Zhao, G. Shao, B.B. Fan, Y.J. **e, R. Zhang, Preparation and electromagnetic wave absorption of chain-like CoNi by a hydrothermal route. J. Magn. Magn. Mater. 372, 195–200 (2014). https://doi.org/10.1016/j.jmmm.2014.08.018

    Article  CAS  Google Scholar 

  42. Z.Q. Qiao, S.K. Pan, J.L. **ong, L.C. Cheng, Q.R. Yao, P.H. Lin, Magnetic and microwave absorption properties of La-Nd-Fe alloys. J. Magn. Magn. Mater. 423, 197–202 (2017). https://doi.org/10.1016/j.jmmm.2016.08.093

    Article  CAS  Google Scholar 

  43. J.J. Pan, X. Sun, T. Wang, Z.T. Zhu, Y.P. He, W. **a, J.P. He, Porous coin-like Fe@MoS2 composite with optimized impedance matching for efficient microwave absorption. Appl. Surf. Sci. 457, 271–279 (2018). https://doi.org/10.1016/j.apsusc.2018.06.263

    Article  CAS  Google Scholar 

  44. H.X. Jia, H.L. **ng, X.L. Ji, S.T. Gao, Synergistic effect of hexagonal flake Co3O4@PANI core–shell composites with excellent microwave-absorbing properties. J. Mater. Sci.: Mater. Electron. 30, 3386–3395 (2019). https://doi.org/10.1007/s10854-018-00612-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51477002 and 51707003), and the National College Students Innovation and Entrepreneurship Training Program of China (Grant No. 201810361075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglong **ng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Q., Zhang, L., **ng, H. et al. Microwave absorption and infrared stealth performance of reduced graphene oxide-wrapped Al flake. J Mater Sci: Mater Electron 31, 3005–3016 (2020). https://doi.org/10.1007/s10854-019-02844-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02844-2

Navigation