Log in

Influence of Mg2+ substitution on structural, optical, magnetic, and antimicrobial properties of Mn–Zn ferrite nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Superparamagnetic nanoparticles (NPs) have a prominent interest from researchers in the field of industrial and biomedical applications. Herein, Mg2+-substituted Mn–Zn ferrites with nominal composition Mn0.5Zn0.5−xMgxFe2O4 NPs (x = 0, 0.125, 0.25, 0.375, and 0.5) are synthesized via a facile sol–gel method. The samples after sintered at 1173 K are characterized via the X-ray diffraction technique (XRD), Fourier transform infrared (FTIR) spectroscopy, the energy-dispersive X-ray spectra (EDX), high-resolution scanning electron microscopy (SEM), ultraviolet-diffuse reflectance spectroscopy (UV-DRS), and vibrating sample magnetometer (VSM) technique. The XRD and FTIR patterns reveal that the formation of the cubic phase of Mn0.5Zn0.5−xMgxFe2O4 NPs. Also, small peaks associated with the phase of hematite (α-Fe2O3) are observed due to the heating of spinel ferrites. The optical band gap for Mg2+-substituted Mn–Zn ferrites ranges between 1.36 and 1.78 eV. The saturation magnetization is enhanced with increasing Mg2+ concentration. Furthermore, the M–H curves show a typical S-shaped exhibiting superparamagnetic nature for the studied samples. Also, the anisotropy constant enhances as Mg2+ content increases in Mn–Zn NPs. Overall, the results revealed that the Mn0.5Zn0.5−xMgxFe2O4 NPs presented a unique properties, and consequently, they can be candidate materials for transformer's cores, antenna, and switching applications. On other hands, antimicrobial potential of the produced ferrite NPs was estimated towards multidrug-resistant (MDR) yeast and bacteria creating urinary tract infection (UTI). All the prepared ferrite NPs showed a hopeful antimicrobial potential upon all UTI-causing pathogens. Between them, Mn0.5Mg0.5 Fe2O4 NPs at 20 µg/ml was the most promising ferrite NPs produced superior antimicrobial activity due to the narrow band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Ghasemi, Particle size dependence of magnetic features for Ni0.6−xCuxZn0.4Fe2O4 spinel nanoparticles. J. Magn. Magn. Mater. 360, 41–47 (2014)

    CAS  Google Scholar 

  2. Rani BJ, Mageswari R, Ravi G, Ganesh V, Yuvakkumar R (2017) Physico-chemical properties of pure and zinc incorporated cobalt nickel mixed ferrite (Zn x Co 0.005− x Ni 0.005 Fe 2 O 4, where x= 0, 0.002, 0.004 M) nanoparticles. J. Mater. Sci. 28(21), 16450–16458.

  3. S.-H. Noh, S.H. Moon, T.-H. Shin, Y. Lim, J. Cheon, Recent advances of magneto-thermal capabilities of nanoparticles: from design principles to biomedical applications. Nano Today 13, 61–76 (2017)

    CAS  Google Scholar 

  4. C. Blanco-Andujar, F.J. Teran, D. Ortega, Chapter 8—Current outlook and perspectives on nanoparticle-mediated magnetic hyperthermia, in Iron oxide nanoparticles for biomedical applications, ed. by M. Mahmoudi, S. Laurent (Elsevier, Amsterdam, 2018), pp. 197–245

    Google Scholar 

  5. Maksoud MA, Elgarahy AM, Farrell C, Rooney DW, Osman AI (2020) Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord. Chem. Rev. 403:213096.

  6. H.S. Hassan, M.A. Maksoud, L.A. Attia, Assessment of zinc ferrite nanocrystals for removal of 134Cs and 152+154Eu radionuclides from nitric acid solution. J. Mater. Sci. (2019). https://doi.org/10.1007/s10854-019-02678-y

    Article  Google Scholar 

  7. M. Angelakeris, Z.-A. Li, M. Hilgendorff, K. Simeonidis, D. Sakellari, M. Filippousi, H. Tian, G. Van Tendeloo, M. Spasova, M. Acet, M. Farle, Enhanced biomedical heat-triggered carriers via nanomagnetism tuning in ferrite-based nanoparticles. J. Magn. Magn. Mater. 381, 179–187 (2015)

    CAS  Google Scholar 

  8. R.A. Bohara, N.D. Thorat, A.K. Chaurasia, S.H. Pawar, Cancer cell extinction through a magnetic fluid hyperthermia treatment produced by superparamagnetic Co–Zn ferrite nanoparticles. RSC Adv. 5(58), 47225–47234 (2015)

    CAS  Google Scholar 

  9. L. Khanna, N.K. Verma, S.K. Tripathi, Burgeoning tool of biomedical applications—superparamagnetic nanoparticles. J. Alloy Compd. 752, 332–353 (2018)

    CAS  Google Scholar 

  10. D. Chen, Z. Liang, J.-K. **ao, F.-H. Wei, Synthesis of Co-substituted Mn–Zn ferrite nanoparticles by mechanochemistry approach. J. Electroceram. 36(1), 158–164 (2016)

    CAS  Google Scholar 

  11. J.T. Seil, T.J. Webster, Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomed. 7, 2767 (2012)

    CAS  Google Scholar 

  12. A. El-Batal, B.M. Haroun, A.A. Farrag, A. Baraka, G.S. El-Sayyad, Synthesis of silver nanoparticles and incorporation with certain antibiotic using gamma irradiation. Brit. J. Pharm. Res. 4(11), 1341 (2014)

    Google Scholar 

  13. A.F. El-Baz, A.I. El-Batal, F.M. Abomosalam, A.A. Tayel, Y.M. Shetaia, S.T. Yang, Extracellular biosynthesis of anti-Candida silver nanoparticles using Monascus purpureus. J. Basic Microbiol. 56(5), 531–540 (2016)

    CAS  Google Scholar 

  14. A.I. El-Batal, N.M. Balabel, M.S. Attia, G.S. El-Sayyad, Antibacterial and antibiofilm potential of mono-dispersed stable copper oxide nanoparticles-streptomycin nano-drug: implications for some potato plant bacterial pathogen treatment. J. Clust. Sci. (2019). https://doi.org/10.1007/s10876-019-01707-4

    Article  Google Scholar 

  15. M.A. Elkodous, G.S. El-Sayyad, I.Y. Abdelrahman, H.S. El-Bastawisy, A.E. Mohamed, F.M. Mosallam, H.A. Nasser, M. Gobara, A. Baraka, M.A. Elsayed, A.I. El-Batal, Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf. B 180, 411–428 (2019)

    Google Scholar 

  16. Elkodous MA, El-Sayyad GS, Mohamed AE, Pal K, Asthana N, de Souza Junior FG, Mosallam FM, Gobara M, El-Batal AI (2019) Layer-by-layer preparation and characterization of recyclable nanocomposite (Co x Ni 1–x Fe 2 O 4; X= 0.9/SiO 2/TiO 2). J. Mater. Sci. 30(9), 8312–8328.

  17. M.F. da Silva, M. Valente, Magnesium ferrite nanoparticles inserted in a glass matrix—microstructure and magnetic properties. Mater. Chem. Phys. 132(2–3), 264–272 (2012)

    Google Scholar 

  18. P.Y. Reyes-Rodríguez, D.A. Cortés-Hernández, J.C. Escobedo-Bocardo, J.M. Almanza-Robles, H.J. Sánchez-Fuentes, A. Jasso-Terán, L.E. De León-Prado, J. Méndez-Nonell, G.F. Hurtado-López, Structural and magnetic properties of Mg–Zn ferrites (Mg1−xZnxFe2O4) prepared by sol-gel method. J. Magn. Magn. Mater. 427, 268–271 (2017)

    Google Scholar 

  19. A.H. Ashour, A.I. El-Batal, M.I.A.A. Maksoud, G.S. El-Sayyad, S. Labib, E. Abdeltwab, M.M. El-Okr, Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151 (2018)

    CAS  Google Scholar 

  20. M.I.A.A. Maksoud, G.S. El-Sayyad, A.H. Ashour, A.I. El-Batal, M.A. Elsayed, M. Gobara, A.M. El-Khawaga, E.K. Abdel-Khalek, M.M. El-Okr, Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microb. Pathog. 127, 144–158 (2019)

    CAS  Google Scholar 

  21. M.I.A. Maksoud, G.S. El-Sayyad, A.H. Ashour, A.I. El-Batal, M.S. Abd-Elmonem, H.A. Hendawy, E.K. Abdel-Khalek, S. Labib, E. Abdeltwab, M.M. El-Okr, Synthesis and characterization of metals-substituted cobalt ferrite [Mx Co(1–x) Fe2O4; (M = Zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater. Sci. Eng. 92, 644–656 (2018)

    Google Scholar 

  22. M.I.A.A. Maksoud, A. El-ghandour, G.S. El-Sayyad, A.S. Awed, R.A. Fahim, M.M. Atta, A.H. Ashour, A.I. El-Batal, M. Gobara, E.K. Abdel-Khalek, M.M. El-Okr, Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications. J. Mater. Sci. 30(5), 4908–4919 (2019)

    CAS  Google Scholar 

  23. M.I.A. Maksoud, A. El-ghandour, G.S. El-Sayyad, A.S. Awed, A.H. Ashour, A.I. El-Batal, M. Gobara, E.K. Abdel-Khalek, M.M. El-Okr, Incorporation of Mn2+ into cobalt ferrite via sol–gel method: insights on induced changes in the structural, thermal, dielectric, and magnetic properties. J. Sol-Gel Sci. Technol. 90(3), 631–642 (2019)

    Google Scholar 

  24. A.A. Reheem, A. Atta, M.A. Maksoud, Low energy ion beam induced changes in structural and thermal properties of polycarbonate. Radiat. Phys. Chem. 127, 269–275 (2016)

    CAS  Google Scholar 

  25. P. Belavi, G. Chavan, L. Naik, R. Somashekar, R. Kotnala, Structural, electrical and magnetic properties of cadmium substituted nickel–copper ferrites. Mater. Chem. Phys. 132(1), 138–144 (2012)

    CAS  Google Scholar 

  26. H.C. Diogo, M. Melhem, A. Sarpieri, M.C. Pires, Evaluation of the disk-diffusion method to determine the in vitro efficacy of terbinafine against subcutaneous and superficial mycoses agents. Anais Brasileiros de Dermatol. 85(3), 324–330 (2010)

    Google Scholar 

  27. A.I. El-Batal, F.M. Mosallam, G.S. El-Sayyad, Synthesis of metallic silver nanoparticles by fluconazole drug and gamma rays to inhibit the growth of multidrug-resistant microbes. J. Clust. Sci. 29(6), 1003–1015 (2018)

    CAS  Google Scholar 

  28. A.I. El-Batal, G.S. El-Sayyad, N.E. Al-Hazmi, M. Gobara, Antibiofilm and antimicrobial activities of silver boron nanoparticles synthesized by PVP polymer and gamma rays against urinary tract pathogens. J. Clust. Sci. 30(4), 947–964 (2019)

    CAS  Google Scholar 

  29. M. Isaka, A. Yangchum, S. Supothina, S. Veeranondha, S. Komwijit, S. Phongpaichit, Semisynthesis and antibacterial activities of nidulin derivatives. J. Antibiot. 72(3), 181 (2019)

    CAS  Google Scholar 

  30. L.S. Clinical, Institute, Methods for determining bactericidal activity of antimicrobial agents: approved guideline M26-A (CLSI Wayne, PA, USA, 1999)

    Google Scholar 

  31. D. Knaack, E.A. Idelevich, N. Schleimer, S. Molinaro, A. Kriegeskorte, G. Peters, K. Becker, Bactericidal activity of bacteriophage endolysin HY-133 against Staphylococcus aureus in comparison to other antibiotics as determined by minimum bactericidal concentrations and time-kill analysis. Diagn. Microbiol. Infect. Dis. 93(4), 362–368 (2019)

    CAS  Google Scholar 

  32. K. Brownlee, Probit analysis: a statistical treatment of the sigmoid response curve (Cambridge University, New York, JSTOR, 1952)

    Google Scholar 

  33. U. Ghodake, R.C. Kambale, S. Suryavanshi, Effect of Mn2+ substitution on structural, electrical transport and dielectric properties of Mg–Zn ferrites. Ceram. Int. 43(1), 1129–1134 (2017)

    CAS  Google Scholar 

  34. E.R. Kumar, R. Jayaprakash, M.S. Seehra, T. Prakash, S. Kumar, Effect of α-Fe2O3 phase on structural, magnetic and dielectric properties of Mn–Zn ferrite nanoparticles. J. Phys. Chem. Solids 74(7), 943–949 (2013)

    Google Scholar 

  35. R. Sharma, P. Thakur, M. Kumar, P.B. Barman, P. Sharma, V. Sharma, Enhancement in A-B super-exchange interaction with Mn2+ substitution in Mg–Zn ferrites as a heating source in hyperthermia applications. Ceram. Int. 43(16), 13661–13669 (2017)

    CAS  Google Scholar 

  36. M. Satalkar, S.N. Kane, A. Ghosh, N. Ghodke, G. Barrera, F. Celegato, M. Coisson, P. Tiberto, F. Vinai, Synthesis and soft magnetic properties of Zn0.8−xNixMg0.1Cu0.1Fe2O4 (x=0.0−0.8) ferrites prepared by sol–gel auto-combustion method. J. Alloys Compd. 615, S313–S316 (2014)

    CAS  Google Scholar 

  37. J. Gutiérrez-López, E. Rodriguez-Senín, J.Y. Pastor, M.A. Paris, A. Martín, B. Levenfeld, A. Várez, Microstructure, magnetic and mechanical properties of Ni–Zn ferrites prepared by powder injection moulding. Powd. Technol. 210(1), 29–35 (2011)

    Google Scholar 

  38. P. Tiwari, R. Verma, S.N. Kane, T. Tatarchuk, F. Mazaleyrat, Effect of Zn addition on structural, magnetic properties and anti-structural modeling of magnesium-nickel nano ferrites. Mater. Chem. Phys. 229, 78–86 (2019)

    CAS  Google Scholar 

  39. R. Sharma, P. Thakur, M. Kumar, N. Thakur, N. Negi, P. Sharma, V. Sharma, Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. J. Alloy Compd. 684, 569–581 (2016)

    CAS  Google Scholar 

  40. Kakade S, Kambale R, Ramanna C, Kolekar Y (2016) Crystal strain, chemical bonding, magnetic and magnetostrictive properties of erbium (Er 3+) ion substituted cobalt-rich ferrite (Co 1.1 Fe 1.9− x Er x O 4). RSC Adv. 6(40), 33308–33317.

    CAS  Google Scholar 

  41. S. Bahhar, H. Lemziouka, A. Boutahar, H. Bioud, H. Lassri, E. Hlil, Influence of La3+ site substitution on the structural, magnetic and magnetocaloric properties of ZnFe2− xLaxO4 (x= 0.00, 0.001, 0.005 and 0.01) spinel zinc ferrites. Chem. Phys. Lett. 716, 186–191 (2019)

    CAS  Google Scholar 

  42. G. Kumar, J. Shah, R.K. Kotnala, P. Dhiman, R. Rani, V.P. Singh, G. Garg, S.E. Shirsath, K.M. Batoo, M. Singh, Self-ignited synthesis of Mg–Gd–Mn nanoferrites and impact of cation distribution on the dielectric properties. Ceram. Int. 40(9), 14509–14516 (2014)

    CAS  Google Scholar 

  43. K. Ramakanth, Basics of X-ray diffraction and its application (IK, New Delhi, 2007)

    Google Scholar 

  44. J.-M. Zhang, Y. Zhang, K.-W. Xu, V. Ji, General compliance transformation relation and applications for anisotropic hexagonal metals. Solid State Commun. 139(3), 87–91 (2006)

    CAS  Google Scholar 

  45. A.K. Zak, W.A. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci. 13(1), 251–256 (2011)

    Google Scholar 

  46. V.D. Mote, Y. Purushotham, B.N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6(1), 6 (2012)

    Google Scholar 

  47. C. Murugesan, G. Chandrasekaran, Impact of Gd 3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5(90), 73714–73725 (2015)

    CAS  Google Scholar 

  48. K.B. Modi, P.Y. Raval, S.J. Shah, C.R. Kathad, S.V. Dulera, M.V. Popat, K.B. Zankat, K.G. Saija, T.K. Pathak, N.H. Vasoya, V.K. Lakhani, U. Chandra, P.K. Jha, Raman and mossbauer spectroscopy and X-ray diffractometry studies on quenched copper–ferri–aluminates. Inorg. Chem. 54(4), 1543–1555 (2015)

    CAS  Google Scholar 

  49. Y. Gao, Z. Wang, J. Pei, H. Zhang, Structural, elastic, thermal and soft magnetic properties of Ni–Zn–Li ferrites. J. Alloy Compd. 774, 1233–1242 (2019)

    CAS  Google Scholar 

  50. R.S. Yadav, I. Kuřitka, J. Havlica, M. Hnatko, C. Alexander, J. Masilko, L. Kalina, M. Hajdúchová, J. Rusnak, V. Enev, Structural, magnetic, elastic, dielectric and electrical properties of hot-press sintered Co1−xZnxFe2O4 (x=0.0, 0.5) spinel ferrite nanoparticles. J. Magn. Magn. Mater. 447, 48–57 (2018)

    Google Scholar 

  51. C. Li, Z. Wang, Computational modelling and ab initio calculations in MAX phases—I, in Advances in Science and Technology of Mn+1AXn Phases, ed. by I.M. Low (Woodhead Publishing, Cambridge, 2012), pp. 197–222

    Google Scholar 

  52. S.E. Shirsath, S.M. Patange, R. Kadam, M. Mane, K. Jadhav, Structure refinement, cation site location, spectral and elastic properties of Zn2+ substituted NiFe2O4. J. Mol. Struct. 1024, 77–83 (2012)

    CAS  Google Scholar 

  53. K.M. Srinivasamurthy, J. Angadi, S.P. Kubrin, S. Matteppanavar, D.A. Sarychev, P.M. Kumar, H.W. Azale, B. Rudraswamy, Tuning of ferrimagnetic nature and hyperfine interaction of Ni2+ doped cobalt ferrite nanoparticles for power transformer applications. Ceram. Int. 44(8), 9194–9203 (2018)

    CAS  Google Scholar 

  54. K. Zipare, S. Bandgar, G. Shahane, Effect of Dy-substitution on structural and magnetic properties of MnZn ferrite nanoparticles. J. Rare Earths 36(1), 86–94 (2018)

    CAS  Google Scholar 

  55. T. Dippong, I.G. Deac, O. Cadar, E.A. Levei, L. Diamandescu, G. Borodi, Effect of Zn content on structural, morphological and magnetic behavior of ZnxCo1-xFe2O4/SiO2 nanocomposites. J. Alloys Compd. 792, 432–443 (2019)

    CAS  Google Scholar 

  56. S. Banerjee, P.C. Chakraborti, S.K. Saha, An automated methodology for grain segmentation and grain size measurement from optical micrographs. Measurement 140, 142–150 (2019)

    Google Scholar 

  57. Omri A, Dhahri E, Costa B, Valente M (2019) Structural, electric and dielectric properties of Ni0. 5Zn0. 5FeCoO4 ferrite prepared by sol-gel. J. Magn. Magn. Mater. Doi: 10.1155/2016/4709687.

    Google Scholar 

  58. T. Tatarchuk, N. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, A. Shyichuk, Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J. Alloy Compd. 731, 1256–1266 (2018)

    CAS  Google Scholar 

  59. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Physica Status Solidi (b) 15(2), 627–637 (1966)

    CAS  Google Scholar 

  60. N. Ghazi, H.M. Chenari, F.E. Ghodsi, Rietveld refinement, morphology analysis, optical and magnetic properties of magnesium-zinc ferrite nanofibers. J. Magn. Magn. Mater. 468, 132–140 (2018)

    CAS  Google Scholar 

  61. A. Ashok, L.J. Kennedy, J.J. Vijaya, Structural, optical and magnetic properties of Zn1-xMnxFe2O4 (0 ≤ x ≤ 0.5) spinel nano particles for transesterification of used cooking oil. J. Alloys Compd. 780, 816–828 (2019)

    CAS  Google Scholar 

  62. A. Goldman, Modern ferrite technology (Springer Science & Business Media, Berlin, 2006)

    Google Scholar 

  63. K. Nadeem, S. Rahman, M. Mumtaz, Effect of annealing on properties of Mg doped Zn-ferrite nanoparticles. Prog. Nat. Sci. 25(2), 111–116 (2015)

    CAS  Google Scholar 

  64. S. Rahman, K. Nadeem, M. Anis-ur-Rehman, M. Mumtaz, S. Naeem, I. Letofsky-Papst, Structural and magnetic properties of ZnMg-ferrite nanoparticles prepared using the co-precipitation method. Ceram. Int. 39(5), 5235–5239 (2013)

    CAS  Google Scholar 

  65. S. Hajarpour, A.H. Raouf, K. Gheisari, Structural evolution and magnetic properties of nanocrystalline magnesium–zinc soft ferrites synthesized by glycine–nitrate combustion process. J. Magn. Magn. Mater. 363, 21–25 (2014)

    CAS  Google Scholar 

  66. S. Khot, N. Shinde, B. Ladgaonkar, B. Kale, S. Watawe, Magnetic and structural properties of magnesium zinc ferrites synthesized at different temperature. Adv. Appl. Sci. Res. 2(4), 460–471 (2011)

    CAS  Google Scholar 

  67. L. Kumar, M. Kar, Effect of La3+ substitution on the structural and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite (CoFe2−xLaxO4). Ceram. Int. 38(6), 4771–4782 (2012)

    CAS  Google Scholar 

  68. H. El Moussaoui, O. Mounkachi, R. Masrour, M. Hamedoun, E.K. Hlil, A. Benyoussef, Synthesis and super-paramagnetic properties of neodymium ferrites nanorods. J. Alloys Compd. 581, 776–781 (2013)

    Google Scholar 

  69. M.N. Akhtar, M.A. Khan, M. Ahmad, M. Nazir, M. Imran, A. Ali, A. Sattar, G. Murtaza, Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0. 5− xNi0. 5Fe2O4) nanocrystalline ferrites for core, switching and MLCI’s applications. J. Magn. Magn. Mater. 421, 260–268 (2017)

    CAS  Google Scholar 

  70. A.V. Humbe, A.C. Nawle, A. Shinde, K. Jadhav, Impact of Jahn Teller ion on magnetic and semiconducting behaviour of Ni-Zn spinel ferrite synthesized by nitrate-citrate route. J. Alloy Compd. 691, 343–354 (2017)

    CAS  Google Scholar 

  71. S.E. Shirsath, M.L. Mane, Y. Yasukawa, X. Liu, A. Morisako, Self-ignited high temperature synthesis and enhanced super-exchange interactions of Ho 3+–Mn 2+–Fe 3+–O 2− ferromagnetic nanoparticles. Phys. Chem. Chem. Phys. 16(6), 2347–2357 (2014)

    CAS  Google Scholar 

  72. J. Smit, H.P.J. Wijn, Physical properties of ferrites, in Advances in Electronics and Electron Physics, ed. by L. Marton (Academic Press, Massachusetts, 1954), pp. 69–136

    Google Scholar 

  73. M.A. Elkodous, G.S. El-Sayyad, H.A. Nasser, A.A. Elshamy, M. Morsi, I.Y. Abdelrahman, A.S. Kodous, F.M. Mosallam, M. Gobara, A.I. El-Batal, Engineered nanomaterials as potential candidates for HIV treatment: between opportunities and challenges. J. Clust. Sci. 30(3), 531–540 (2019)

    Google Scholar 

  74. T. **, Y. He, Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J. Nanopart Res. 13(12), 6877–6885 (2011)

    CAS  Google Scholar 

  75. Z.-X. Tang, B.-F. Lv, MgO nanoparticles as antibacterial agent: preparation and activity. Braz. J. Chem. Eng. 31(3), 591–601 (2014)

    Google Scholar 

  76. M.E. Abd, G. El-Sayyad, M.M. Abdel, I. Abdelrahman, F. Mosallam, M. Gobara, A. El-Batal, Fabrication of ultra-pure anisotropic zinc oxide nanoparticles via simple and cost-effective route: implications for UTI and EAC medications. Trace Elem. Res. Biol. https://doi.org/10.1007/s12011-019-01894-1 (2019)

    Article  Google Scholar 

  77. P. Singha, C.D. Workman, J. Pant, S.P. Hopkins, H. Handa, Zinc-oxide nanoparticles act catalytically and synergistically with nitric oxide donors to enhance antimicrobial efficacy. J. Biomed. Mater. Res. 107(7), 1425–1433 (2019)

    CAS  Google Scholar 

  78. V. Stanić, S. Dimitrijević, J. Antić-Stanković, M. Mitrić, B. Jokić, I.B. Plećaš, S. Raičević, Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl. Surf. Sci. 256(20), 6083–6089 (2010)

    Google Scholar 

  79. R.J. Lynch, Zinc in the mouth, its interactions with dental enamel and possible effects on caries; a review of the literature. Int. Dent. J. 61, 46–54 (2011)

    Google Scholar 

  80. S. Peulon, D. Lincot, Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films. Adv. Mater. 8(2), 166–170 (1996)

    CAS  Google Scholar 

  81. S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73(6), 1712–1720 (2007)

    CAS  Google Scholar 

  82. A.I. El-Batal, G.S. El-Sayyad, A. El-Ghamery, M. Gobara, Response surface methodology optimization of melanin production by Streptomyces cyaneus and synthesis of copper oxide nanoparticles using gamma radiation. J. Clust. Sci. 28(3), 1083–1112 (2017)

    CAS  Google Scholar 

  83. S. Xavier, H. Cleetus, P. Nimila, S. Thankachan, R. Sebastian, E. Mohammed, Structural and antibacterial properties of silver substituted cobalt ferrite nanoparticles. Res. J. Pharm. Biol. Chem. Sci. 5(5), 364–371 (2014)

    CAS  Google Scholar 

  84. D. Gingasu, I. Mindru, L. Patron, J.M. Calderon-Moreno, O.C. Mocioiu, S. Preda, N. Stanica, S. Nita, N. Dobre, M. Popa, Green synthesis methods of CoFe2O4 and Ag-CoFe2O4 nanoparticles using hibiscus extracts and their antimicrobial potential. J. Nanomater. (2016). https://doi.org/10.1155/2016/2106756

    Article  Google Scholar 

  85. M.M. Naik, H.B. Naik, N. Kottam, M. Vinuth, G. Nagaraju, M. Prabhakara, Multifunctional properties of microwave-assisted bioengineered nickel doped cobalt ferrite nanoparticles. J. Sol-Gel Sci. Technol. 91(3), 578–595 (2019)

    CAS  Google Scholar 

  86. S. Ma, M. Tong, S. Yuan, H. Liu, Responses of the microbial community structure in Fe (II)-bearing sediments to oxygenation: the role of reactive oxygen species. ACS Earth Space Chem. 3(5), 738–747 (2019)

    CAS  Google Scholar 

  87. A. Hezma, A. Rajeh, M.A. Mannaa, An insight into the effect of zinc oxide nanoparticles on the structural, thermal, mechanical properties and antimicrobial activity of Cs/PVA composite. Colloids Surf. A 581, 123821 (2019)

    CAS  Google Scholar 

  88. N. Sanpo, C.C. Berndt, J. Wang, Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol-gel methods. J. Appl. Phys. 112(8), 084333 (2012)

    Google Scholar 

  89. G.S. El-Sayyad, H.S. El-Bastawisy, M. Gobara, A.I. El-Batal, Gentamicin-assisted mycogenic selenium nanoparticles synthesized under gamma irradiation for robust reluctance of resistant urinary tract infection-causing pathogens. Trace Elem. Res. Biol. https://doi.org/10.1007/s12011-019-01842-z(2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Materials Science Unit, Radiation Physics Department, National Center for Radiation Research and Technology, Egypt, for financing and supporting this study under the project Nanostructured Magnetic Materials. Also, the authors would like to thank Prof. Mohamed Gobara (Head of Chemical Engineering Department, Military Technical College, Egyptian Armed Forces, Cairo, Egypt), and Zeiss microscope team in Cairo for their invaluable advice during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. A. Abdel Maksoud.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel Maksoud, M.I.A., El-Sayyad, G.S., Abokhadra, A. et al. Influence of Mg2+ substitution on structural, optical, magnetic, and antimicrobial properties of Mn–Zn ferrite nanoparticles. J Mater Sci: Mater Electron 31, 2598–2616 (2020). https://doi.org/10.1007/s10854-019-02799-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02799-4

Navigation