Log in

Superconducting properties of saccharin-added bulk MgB2 superconductors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, saccharin was used as the carbon source for addition in bulk MgB2 superconductor. MgB2 samples were successfully prepared with saccharin and ethanol-processed boron using a wet-mixing method. Actual carbon substitution level in the MgB2 lattice increased from 0 to 3.58% with the increasing saccharin content up to 1% and slightly decreased at higher saccharin content. While the 0.1% saccharin-added sample showed the highest critical current density of 2.17 × 105 A/cm2 in the self field at 20 K, the undoped sample showed a lower critical current density of 1.19 × 105 A/cm2. In addition to this, the critical current densities in 4 T field at 10 K for 0.1% and 0.5% saccharin-added samples were calculated to be 1.5 × 104 and 1 × 104 A/cm2, respectively. It was obtained that the addition of low-rate saccharin content did not affect the superconducting transition temperature of the MgB2 sample. These results show that MgB2 fabrication with small amount of saccharin is beneficial to improve critical current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63–64 (2001)

    Article  CAS  Google Scholar 

  2. C. Buzea, T. Yamashita, Supercond. Sci. Technol. 14, R115–R146 (2001)

    Article  CAS  Google Scholar 

  3. X.H. Li, X.J. Du, M. Qiu, Y.W. Ma, L.Y. **ao, Physica C 463–465, 1338–1341 (2007)

    Article  Google Scholar 

  4. V.S. Vysotsky, A.A. Nosov, S.S. Fetisov, G.G. Svalov, V.V. Kostyuk, E.V. Blagov, I.V. Antyukhov, V.P. Firsov, B.I. Katorgin, A.L. Rakhmanov, IEEE Trans. Appl. Supercond. 23, 5400906 (2013)

    Article  Google Scholar 

  5. S. Mizuno, T. Yagai, T. Okubo, S. Mizuochi, M. Kamibayashi, M. **bo, T. Takao, Y. Makida, T. Shintomi, N. Hirano, T. Komagome, K. Tsukada, T. Onji, Y. Arai, M. Tomita, D. Miyagi, M. Tsuda, T. Hamajima, IEEE Trans. Appl. Supercond. 28, 4602505 (2018)

    Google Scholar 

  6. Q. Ma, J. Peng, Z. Ma, F. Cheng, F. Lan, C. Li, Z. Yang, C. Liu, Y. Liu, Mater. Chem. Phys. 204, 62–66 (2018)

    Article  CAS  Google Scholar 

  7. S.X. Dou, S. Soltanian, W.K. Yeoh, Y. Zhang, IEEE Trans. Appl. Supercond. 15, 3219–3222 (2005)

    Article  CAS  Google Scholar 

  8. M. Mudgel, V.P.S. Awana, H. Kishan, G.L. Bhalla, Solid State Commun. 146, 330–334 (2008)

    Article  CAS  Google Scholar 

  9. A. Matsumoto, H. Kumakura, H. Kitaguchi, H. Hatakeyama, Supercond. Sci. Technol. 16, 926–930 (2003)

    Article  CAS  Google Scholar 

  10. S.X. Dou, W.K. Yeoh, O. Shcherbakova, D. Wexler, Y. Li, Z.M. Ren, P. Munroe, S.K. Chen, K.S. Tan, B.A. Glowacki, J.L. MacManus-Driscoll, Adv. Mater. 18, 785–788 (2006)

    Article  CAS  Google Scholar 

  11. Y. Yang, C.H. Cheng, L. Wang, H.H. Sun, Y. Zhao, Physica C 470, 1100–1102 (2010)

    Article  CAS  Google Scholar 

  12. F. Qin, Q. Cai, H. Chen, J. Alloy Compd. 633, 201–206 (2015)

    Article  CAS  Google Scholar 

  13. C. Wang, D. Wang, X. Zhang, C. Yao, C. Wang, Y. Ma, Physica C 489, 36–39 (2013)

    Article  CAS  Google Scholar 

  14. S.M. Hwang, C.M. Lee, S.M. Lee, K. Sung, J. Joo, J.H. Lim, W.N. Kang, C.-J. Kim, Physica C 470, S1032–S1033 (2010)

    Article  CAS  Google Scholar 

  15. L. Chunyan, S. Hongli, L. Min, M. Lin, W. Yi, T. Min, W. Baicen, C. **, J. Yaotang, Physica C 555, 60–65 (2018)

    Article  Google Scholar 

  16. Y. Yücel, E. Yücel, Süleyman Demirel Univ. J. Natl. Appl. Sci. 22, 134–140 (2018)

    Google Scholar 

  17. S.H. Kima, H.J. Sohn, Y.C. Joo, Y.W. Kim, T.H. Yim, H.Y. Lee, T. Kang, Surf. Coat. Technol. 199, 43–48 (2005)

    Article  Google Scholar 

  18. J.C. Grivel, Physica C 550, 1–6 (2018)

    Article  CAS  Google Scholar 

  19. P. Debye, P. Scherrer, Physica Z 18, 291–301 (1917)

    CAS  Google Scholar 

  20. A.M. Rashidi, A. Amadeh, Surf. Coat. Technol. 204, 353–358 (2009)

    Article  CAS  Google Scholar 

  21. C. Wang, Y. Ma, X. Zhang, D. Wang, Z. Gao, C. Yao, S. Awaji, K. Watanabe, Supercond. Sci. Technol. 24, 105005 (2011)

    Article  Google Scholar 

  22. A. Vajpayee, V.P.S. Awana, G.L. Bhalla, P.A. Bhobe, A.K. Nigam, H. Kishan, Supercond. Sci. Technol. 22, 015016 (2009)

    Article  Google Scholar 

  23. J.H. Lim, S.H. Jang, S.M. Hwang, J.H. Choi, J. Joo, W.N. Kang, C. Kim, Physica C 468, 1829–1832 (2008)

    Article  CAS  Google Scholar 

  24. B. Savaşkan, E.T. Koparan, S.B. Güner, S. Çelik, K. Öztürk, E. Yanmaz, J. Low Temp. Phys. 181, 38–48 (2015)

    Article  Google Scholar 

  25. A. Serquis, X.Z. Liao, L. Civale, Y.T. Zhu, J.Y. Coulter, D.E. Peterson, F.M. Mueller, IEEE Trans. Appl. Supercond. 13, 3068–3071 (2003)

    Article  CAS  Google Scholar 

  26. Y. Kimishima, S. Takami, T. Okuda, M. Uehara, T. Kuramoto, Y. Sugiyama, Physica C 463–465, 281–285 (2007)

    Article  Google Scholar 

  27. C.P. Bean, Phys. Rev. Lett. 8, 250–253 (1962)

    Article  Google Scholar 

  28. M.R. Koblischka, A.K. Veneva, M. Miryala, M. Murakami, IEEE Trans. Appl. Supercond. 29, 6800104 (2019)

    CAS  Google Scholar 

  29. B. Kızılkoca, E. Yücel, Mater. Res. Express. 6, 106001 (2019)

    Article  Google Scholar 

  30. S. Zhou, A.V. Pan, D. Wexler, S.X. Dou, Adv. Mater. 19, 1373–1376 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the Scientific Research Project Fund of Hatay Mustafa Kemal University under the project number 13122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ersin Yücel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yücel, E. Superconducting properties of saccharin-added bulk MgB2 superconductors. J Mater Sci: Mater Electron 31, 2428–2435 (2020). https://doi.org/10.1007/s10854-019-02779-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02779-8

Navigation