Log in

Study on the preparation of water-soluble AgInS2 quantum dots and their application in the detection of ciprofloxacin

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Water-soluble AgInS2 quantum dots (AIS QDs) were prepared by hot-injection method with thioglycolic acid (TGA) as the stabilizer. The fluorescence of as-prepared AIS QDs could be quenched effectively by ciprofloxacin. Herein, a method for the content determination of ciprofloxacin based on the fluorescence quenching effect was explored. The experimental results showed that the particle size of AIS QDs prepared at pH = 4 was about 3–8 nm, and the maximum fluorescence emission wavelength was centered at 626 nm at λex = 500 nm. The measured concentration range of ciprofloxacin could be adjusted by varying the amount of AIS QDs solution. When 0.40 mL AIS QDs solution was used for the content determination of ciprofloxacin, a good linearity relationship was achieved between the quenched efficiency of AIS QDs fluorescence and the concentration of ciprofloxacin in the range of 1.0–19.5 μg/mL, the correlation coefficient was 0.996, the detection limit of ciprofloxacin was 0.12 μg/mL, and the blank spike recoveries were in the range of 96.7–103.3%. The method is of wide detection range, excellent selectivity, high sensitivity and easy operability, could be applied for the content determination of ciprofloxacin in drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Nguyen, C.M. Gonzalez, R. Sinelnikov, W. Newman, S. Sun, R. Lockwood, J.G.C. Veinot, A. Meldrum, Nanotechnology 27, 105501 (2016)

    Article  Google Scholar 

  2. Y. Shirasaki, G.J. Supran, M.G. Bawendi, V. Bulović, Nat. Photonics 7, 13 (2013)

    Article  CAS  Google Scholar 

  3. I. Phiwchai, T. Thongtem, S. Thongtem, C. Pilapong, Int. J. Pharm. 524, 30 (2017)

    Article  CAS  Google Scholar 

  4. J. Hua, M. Wang, Y. Jiao, H. Li, Y. Yang, Optik 171, 95 (2018)

    Article  CAS  Google Scholar 

  5. P. Singhal, H.N. Ghosh, J. Phys. Chem. C 122, 17586 (2018)

    Article  CAS  Google Scholar 

  6. M. Debbarma, U. Sarkar, B. Debnath, S. Chanda, D. Ghosh, R. Bhattacharjee, S. Chattopadhyaya, Curr. Appl. Phys. 18, 698 (2018)

    Article  Google Scholar 

  7. S. Suzuki, Y. Hattori, S. Kuwabata, T. Torimoto, J. Photochem. Photobiol. A 332, 371 (2017)

    Article  CAS  Google Scholar 

  8. R.N. Maronesi, D.L. Ferreira, M.L. Lana, M.S. Couto, S.O. Ferreira, A.G. Silva, J. Lumin. 202, 489 (2018)

    Article  CAS  Google Scholar 

  9. Y. Cui, C. Zhang, L. Song, J. Yang, Z. Hu, X. Liu, J. Nanosci. Nanotechnol. 18, 2271 (2018)

    Article  CAS  Google Scholar 

  10. H. Shi, X. Ye, X. He, K. Wang, W. Cui, D. He, D. Li, X. Jia, Nanoscale 6, 8754 (2014)

    Article  CAS  Google Scholar 

  11. L. Liu, R. Hu, I. Roy, G. Lin, L. Ye, J.L. Reynolds, J. Liu, J. Liu, S.A. Schwartz, X. Zhang, K.T. Yong, Theranostics 3, 109 (2013)

    Article  CAS  Google Scholar 

  12. B.B. Panda, R.K. Rana, B. Sharma, Nano 9, 02002 (2017)

    Google Scholar 

  13. X.-L. Bao, Y.-P. Ren, H. Zhang, Chin. J. Anal. Chem. 37, 389 (2009)

    CAS  Google Scholar 

  14. J.-U.S. Jensen, L. Hein, B. Lundgren, M.H. Bestle, T. Mohr, M.H. Andersen, J. Løken, H. Tousi, P. Søe-Jensen, A.Ø. Lauritsen, D. Strange, J.A. Petersen, K. Thormar, K.M. Larsen, N.-E. Drenck, J. Helweg-Larsen, M.E. Johansen, K. Reinholdt, J.K. Møller, B. Olesen, M.C. Arendrup, C. Østergaard, A. Cozzi-Lepri, J. Grarup, J.D. Lundgren, Crit. Care Med. 43, 594 (2015)

    Article  CAS  Google Scholar 

  15. N. Hanna, P. Sun, Q. Sun, X. Li, X. Yang, X. Ji, H. Zou, J. Ottoson, L.E. Nilsson, B. Berglund, O.J. Dyar, A.J. Tamhankar, C. Stålsby Lundborg, Environ. Int. 114, 131 (2018)

    Article  CAS  Google Scholar 

  16. X. Liu, J.C. Steele, X.Z. Meng, Environ. Pollut. 223, 161 (2017)

    Article  CAS  Google Scholar 

  17. J. Hua, Y. Jiao, M. Wang, Y. Yang, Microchim. Acta 185, 1 (2018)

    Article  Google Scholar 

  18. L. Jank, M.T. Martins, J.B. Arsand, M.F. Ferrão, R.B. Hoff, F. Barreto, T.M. Pizzolato, Food Addit. Contam. A 35, 1975 (2018)

    Article  CAS  Google Scholar 

  19. Y. Feng, W.J. Zhang, Y.W. Liu, J.M. Xue, S.Q. Zhang, Z.J. Li, Molecules (2018). https://doi.org/10.3390/molecules23081953

    Article  Google Scholar 

  20. A. Fahim, B. Aslam, M. Mohsin, A. Raza, M.N. Faisal, A. Hussain, Pak. Vet. J. 38, 329 (2018)

    CAS  Google Scholar 

  21. K. Škrášková, L.H.M.L.M. Santos, D. Šatínský, A. Pena, M.C.B.S.M. Montenegro, P. Solich, L. Nováková, J. Chromatogr. B 927, 201 (2013)

    Article  Google Scholar 

  22. M.I. Pascual-Reguera, G.P. Parras, A.M. Díaz, Microchem. J. 77, 79 (2004)

    Article  CAS  Google Scholar 

  23. B. Torabi, F. Shemirani, Talanta 120, 34 (2014)

    Article  CAS  Google Scholar 

  24. M.D. Regulacio, K.Y. Win, S.L. Lo, S.Y. Zhang, X. Zhang, S. Wang, M.Y. Han, Y. Zheng, Nanoscale 5, 2322 (2013)

    Article  CAS  Google Scholar 

  25. B. Sivannarayana, M. Jyosthna, D. Jeevan, M. Babu, M. Sunil, IJRPB 7, 40 (2019)

    Google Scholar 

  26. B. Bhongade, S. Talath, S. Dhaneshwar, Int. J. Spectrosc. 2014, 1 (2014)

    Article  Google Scholar 

  27. A.M. Abulkibash, S.M. Sultan, A.M. Al-Olyan, S.M. Al-Ghannam, Talanta 61, 239 (2003)

    Article  CAS  Google Scholar 

  28. S.A. Ali, C.C. Mmuo, R.O. Abdulraheem, S.S. Abdulkareem, E.T. Alemika, M.A. Sani, M. Ilyas, J. Appl. Pharm. Sci. 1, 239 (2011)

    Google Scholar 

  29. N.S.D. Sachin Parmar, A. Gangwal, 2, 373 (2011)

  30. N.A. Alarfaj, S.A. Abdel Razeq, H.M. Alsehaly, Asian J. Chem. 23, 3362 (2011)

    CAS  Google Scholar 

  31. J. Liang, S. Huang, D. Zeng, Z. He, X. Ji, X. Ai, H. Yang, Talanta 69, 126 (2006)

    Article  CAS  Google Scholar 

  32. D.P.S. Negi, T.I. Chanu, Nanotechnology 19, 465503 (2008)

    Article  Google Scholar 

  33. T. Zhang, X. Sun, B. Liu, Spectrochim. Acta A 79, 1566 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China (Grant No. 21563003). The authors thank **aodong Wen for providing help by the project of Dali University Innovation Team for Research and Application of Pharmaceutical Analysis Technology (Grant No. ZKLX2019216).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Ya Yan.

Ethics declarations

Conflict of interest

There are not conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Zhang, Y., Zhang, Q. et al. Study on the preparation of water-soluble AgInS2 quantum dots and their application in the detection of ciprofloxacin. J Mater Sci: Mater Electron 30, 18794–18801 (2019). https://doi.org/10.1007/s10854-019-02233-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02233-9

Navigation