Log in

Electron transport and magnetotransport in graphene films grown on iron thin film catalyst

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphene films were grown by the low-pressure chemical vapor deposition with a single injection of acetylene on an iron film catalyst deposited on oxidized silicon substrate. After treatment of the graphene on the iron film with aqueous solution of iron nitrate the structures consisting of quasi-suspended graphene on reaction products of the iron film with iron nitrate were obtained. The electron transport and magnetotransport properties of the films were investigated. The films have a low resistance of 80 Ohm sq−1 and a high sheet carrier density (8 × 1013 cm−2 at room temperature). At temperatures less than 200 K, the dependence of the Hall resistance on the magnetic field is like the abnormal Hall effect. Large positive linear magnetoresistance at a room temperature (60–100%) was observed in the films in a field of 0.6 T, which is attractive for creating magnetoresistive sensors. It was found that the critical magnetic field at which the MR becomes linear is very small (116–650 Oe) and linearly dependent on a temperature. The MR is proportional to the average mobility 〈µ〉. At low temperatures, the magnetoresistance increases with increasing temperature. At higher temperatures the MR decreases with increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 22, 666 (2004)

    Article  Google Scholar 

  2. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  Google Scholar 

  3. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, D.C. Elias, J.A. Jaszczak, A.K. Geim, Phys. Rev. Lett. 100, 016602 (2008)

    Article  Google Scholar 

  4. D.K. Efelov, P. Kim, Phys. Rev. Lett. 105, 256805 (2010)

    Article  Google Scholar 

  5. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature 457, 706 (2009)

    Article  Google Scholar 

  6. X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science 324, 1312 (2009)

    Article  Google Scholar 

  7. S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, S. Iijima, Nat. Nanotechnol. 5, 574 (2010)

    Article  Google Scholar 

  8. V.L. Nguyen, B.G. Shin, D.L. Duong, S.T. Kim, D. Perello, Y.J. Lim, Q.H. Yuan, F. Ding, H.Y. Jeong, H.S. Shin, S.M. Lee, S.H. Chae, Q.A. Vu, S.H. Lee, Y.H. Lee, Adv. Mater. 27, 1376 (2015)

    Article  Google Scholar 

  9. H.J. Shin, W.M. Choi, S.M. Yoon, G.H. Han, Y.S. Woo, E.S. Kim, S.J. Chae, X.S. Li, A. Benayad, D.D. Loc, F. Gunes, Y.H. Lee, J.Y. Choi, Adv. Mater. 23, 4392 (2011)

    Article  Google Scholar 

  10. J. Kwak, J.H. Chu, J.K. Choi, S.D. Park, H. Go, S.Y. Kim, K. Park, S.D. Kim, Y.W. Kim, E. Yoon, S. Kodambaka, S.Y. Kwon, Nat. Commun. 3, 645 (2012)

    Article  Google Scholar 

  11. Q.Q. Zhuo, Q. Wang, Y.P. Zhang, D. Zhang, Q.L. Li, C.H. Gao, Y.Q. Sun, L. Ding, Q.J. Sun, S.D. Wang, J. Zhong, X.H. Sun, S.T. Lee, ACS Nano 9, 594 (2015)

    Article  Google Scholar 

  12. Z. Yan, Z.W. Peng, Z.Z. Sun, J. Yao, Y. Zhu, Z. Liu, P.M. Ajayan, J.M. Tour, ACS Nano 5, 8187 (2011)

    Article  Google Scholar 

  13. M.P. Levendorf, C.S. Ruiz-Vargas, S. Garg, J. Park, Nano Lett. 9, 4479 (2009)

    Article  Google Scholar 

  14. V.N. Matveev, V.I. Levashov, O.V. Kononenko, V.T. Volkov, Scr. Mater. 147, 37 (2018)

    Article  Google Scholar 

  15. Y.A. Kasumov, A. Shailos, I.I. Khodos, V.T. Volkov, V.I. Levashov, V.N. Matveev, S. Gueron, M. Kobylko, M. Kociak, H. Bouchiat, V. Agache, A.S. Rollier, L. Buchaillot, A.M. Bonnot, A.Y. Kasumov, Appl. Phys. A 88, 687 (2007)

    Article  Google Scholar 

  16. O.V. Kononenko, V.N. Matveev, D.P. Field, D.V. Matveev, S.I. Bozhko, D.V. Roshchupkin, E.E. Vdovin, A.N. Baranov, Nanosyst. Phys. Chem. Math. 5, 117 (2014)

    Google Scholar 

  17. E.J. Heller, Y. Yang, L. Kocia, W. Chen, S. Fang, M. Borunda, E. Kaxiras, ACS Nano 10, 2803 (2016)

    Article  Google Scholar 

  18. R. Rao, R. Podila, R. Tsuchikawa, J. Katoch, D. Tishler, A.M. Rao, M. Ishigami, ACS Nano 5, 1594 (2011)

    Article  Google Scholar 

  19. J. Kozlova, A. Niilisk, H. Alles, V. Sammelselg, Carbon 94, 160 (2015)

    Article  Google Scholar 

  20. A. Niilisk, J. Kozlova, H. Alles, J. Aarik, V. Sammelselg, Carbon 98, 658 (2016)

    Article  Google Scholar 

  21. Y. Gogotsi, Nat. Nanotechnol. 13, 625 (2018)

    Article  Google Scholar 

  22. V. Ambegaokar, B.I. Halperin, J.S. Langer, Phys. Rev. B 4, 2612 (1971)

    Article  Google Scholar 

  23. H. Miyazaki, K. Tsukagoshi, A. Kanda, M. Otani, S. Okada, Nano Lett. 10, 3888 (2010)

    Article  Google Scholar 

  24. T.F. Chung, Y. Xu, Y.P. Chen, Phys. Rev. B 98, 035425 (2018)

    Article  Google Scholar 

  25. L. Berger, G. Bergmann, in The hall effect and its applications, ed. by C.L. Chien, C.R. Westgate (Plenum, New York, 1980), p. 55

    Chapter  Google Scholar 

  26. S.P. Gubin, Y.A. Koksharov, G.B. Khomutov, GYu. Yurkov, Russ. Chem. Rev. 74, 489 (2005)

    Article  Google Scholar 

  27. V.N. Nikiforov, A.E. Goldt, E.A. Gudilin, V.G. Sredin, V.Y. Irhin, Bull. Russ. Acad. Sci. Phys. 78, 1075 (2014)

    Article  Google Scholar 

  28. W. Wu, X.H. **ao, S.F. Zhang, T.C. Peng, J. Zhou, F. Ren, C.Z. Jiang, Nanoscale Res. Lett. 5, 1474 (2010)

    Article  Google Scholar 

  29. M.U. Zulfiqar, M.U. Rahman, M. Usman, S.K. Hasanain, A. Ullah, I.W. Kim, J. Korean Phys. Soc. 65, 1925 (2014)

    Article  Google Scholar 

  30. E.M. Pugh, N. Rostoker, Rev. Mod. Phys. 25, 151 (1953)

    Article  Google Scholar 

  31. F.V. Tikhonenko, A.A. Kozikov, A.K. Savchenko, R.V. Gorbachev, Phys. Rev. Lett. 103, 226801 (2006)

    Article  Google Scholar 

  32. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, L.A. Ponomarenko, D. Jiang, A.K. Geim, Phys. Rev. Lett. 97, 016801 (2006)

    Article  Google Scholar 

  33. Z.M. Liao, Y.B. Zhou, H.C. Wu, B.H. Han, D.P. Yu, EPL 94, 57004 (2011)

    Article  Google Scholar 

  34. H. Li, Y.J. Zeng, X.J. Hu, H.H. Zhang, S.C. Ruan, M.J. Van Bael, C. Van Haesendonck, Carbon 124, 193 (2017)

    Article  Google Scholar 

  35. M. Parish, P. Littlewood, Nature 426, 162 (2003)

    Article  Google Scholar 

  36. M. Parish, P. Littlewood, Phys. Rev. B 72, 094417 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the State task 075-00475-19-00 IMT RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kononenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kononenko, O.V., Zotov, A.V., Volkov, V.T. et al. Electron transport and magnetotransport in graphene films grown on iron thin film catalyst. J Mater Sci: Mater Electron 30, 16353–16358 (2019). https://doi.org/10.1007/s10854-019-02006-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02006-4

Navigation