Log in

Microstructure and shear behavior of solder joint with Sn58Bi/Sn3.0Ag0.5Cu/Cu superposition structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Solder joint with Sn58Bi/Sn3.0Ag0.5Cu/Cu superposition structure was designed and fabricated by two-step soldering process. Sn, Ag, and Cu atoms diffused from the Sn3.0Ag0.5Cu bulk into the molten Sn58Bi solder paste during the second soldering process. The Sn3.0Ag0.5Cu bulk in the composite solder joint increased the concentration and grain size of β-Sn in the Sn58Bi bulk. Moreover, a large amount of tiny Bi-rich particles were found in the Sn58Bi solder bulk. The formation and growth of the β-Sn phases in the Sn58Bi solder bulk was affected by the microstructure of the Sn3.0Ag0.5Cu bulk. Additionally, the β-Sn dendritic in Sn58Bi bulk grew along the Sn3.0Ag0.5Cu bulk like the sunlight. The composite solder joint showed more ductile features than the traditional Sn58Bi eutectic solder joint due to its microstructural transformation occurred during the second soldering process. The Sn3.0Ag0.5Cu bulk with superposition structure works as a barrier to propagate cracks and effectively suppresses the brittle failure of the solder joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.L. Liu, J.K. Shang, J. Mater. Res. 16(6), 1651 (2001)

    Article  Google Scholar 

  2. Y. Li, Y.C. Chan, J. Alloys Compd. 645, 566 (2015)

    Article  Google Scholar 

  3. D. Ma, P. Wu, Trans. Nonferr. Metal. Soc. 25(4), 1225 (2015)

    Article  Google Scholar 

  4. W. Zhu, Y. Ma, X. Li, W. Zhou, P. Wu, J. Mater. Sci.: Mater. Electron. 29(9), 7575 (2018)

    Google Scholar 

  5. H. Sun, Y.C. Chan, F. Wu, J. Mater. Sci.: Mater. Electron. 26(7), 5318 (2015)

    Google Scholar 

  6. Y. Liu, H. Fu, F. Sun, H. Zhang, X. Kong, T. **n, J. Mater. Process. Technol. 238, 290 (2016)

    Article  Google Scholar 

  7. W.R. Myung, Y. Kim, S.B. Jung, J. Electron. Mater. 44(11), 4637 (2015)

    Article  Google Scholar 

  8. F. Wang, D. Li, Z. Zhang, M. Wu, C. Yan, J. Mater. Sci.: Mater. Electron. 8(24), 19051 (2017)

    Google Scholar 

  9. F.Q. Hu, Q.K. Zhang, J.J. Jiang, Z.L. Song, Mater. Lett. 214, 142 (2018)

    Article  Google Scholar 

  10. H.F. Zou, Q.K. Zhang, Z.F. Zhang, Mater. Sci. Eng. A 532, 167 (2012)

    Article  Google Scholar 

  11. S. Zhou, Y.A. Shen, T. Uresti, V.C. Shunmugasamy, B. Mansoor, H. Nishikawa, J. Mater. Sci.: Mater. Electron. 30(8), 7423 (2019)

    Google Scholar 

  12. L. Zhang, L. Sun, Y. Guo, J. Mater. Sci.: Mater. Electron. 26(10), 7629 (2015)

    Google Scholar 

  13. T. Lu, D. Yi, H. Wang, X. Tu, B. Wang, J. Alloys Compd. 781, 633 (2019)

    Article  Google Scholar 

  14. G. Chen, L. Liu, J. Du, V.V. Silberschmidt, Y.C. Chan, C. Liu, F. Wu, J. Mater. Sci. 51(22), 10077 (2016)

    Article  Google Scholar 

  15. A.T. Tan, A.W. Tan, F. Yusof, J. Alloys Compd. 705, 188 (2017)

    Article  Google Scholar 

  16. C.R. Kao, Mater. Sci. Eng., A 238(1), 196 (1997)

    Article  Google Scholar 

  17. S.A. Belyakov, C.M. Gourlay, Thermochim. Acta 654, 65 (2017)

    Article  Google Scholar 

  18. Y. Liu, H. Fu, H. Zhang, F. Sun, X. Wang, G. Zhang, J. Mater. Sci.: Mater. Electron. 28(24), 19113 (2017)

    Google Scholar 

  19. R. Xu, Y. Liu, H. Zhang, Z. Li, F. Sun, G. Zhang, J. Electron. Mater. 48(3), 1758 (2019)

    Article  Google Scholar 

  20. D. Di Maio, C. Hunt, J. Mater. Sci.: Mater. Electron. 20(4), 386 (2008)

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 51604090) and Natural Science Foundation of Heilongjiang Province (Grant No. E2017050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xu, R., Zhang, H. et al. Microstructure and shear behavior of solder joint with Sn58Bi/Sn3.0Ag0.5Cu/Cu superposition structure. J Mater Sci: Mater Electron 30, 14077–14084 (2019). https://doi.org/10.1007/s10854-019-01773-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01773-4

Navigation