Log in

Controllable synthesis of highly active BiOCl with different content oxygen vacancies

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High content oxygen vacancies BiOCl consisted of thinner nanosheets was successfully synthesized assisted with ammonium sulfamate (AS) via a facile solvothermal route. X-ray powder diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscope (TEM), UV–Vis diffused reflectance spectra (DRS), temperature programmed oxidation (O2-TPD), photoluminescence (PL), electrochemical impedance spectroscopy (EIS), and electron spin resonance (ESR) were applied to characterize the structure, morphology as well as the physicochemical properties of as-synthesized samples. The results confirm that AS and the mix solution pH have great effect on the BiOCl properties. BOC-2 (k = 0.484 min− 1) due to its high content oxygen vacancies exhibits 23 times high visible photocatalytic performance than BOC (k = 0.021 min− 1) for degradation of Rhodamine B (RhB), and enhanced photodegradation of antibiotic tetracycline hydrochloride (TC-HCl) solution. This work provides new insights on controllable synthesis of highly active BiOCl with different content oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2
Fig. 12

Similar content being viewed by others

References

  1. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)

    Article  Google Scholar 

  2. M. Dresselhaus, I. Thomas, Nature 414, 332 (2001)

    Article  Google Scholar 

  3. J. Du, X. Lai, N. Yang et al., ACS Nano 5, 590 (2010)

    Article  Google Scholar 

  4. K. Zhang, C. Liu, F. Huang, C. Zheng, W. Wang, Appl. Catal. B 68, 125 (2006). https://doi.org/10.1016/j.apcatb.2006.08.002

    Article  Google Scholar 

  5. Y. Wu, B. Yuan, M. Li, W.-H. Zhang, Y. Liu, C. Li, Chem. Sci. 6, 1873 (2015)

    Article  Google Scholar 

  6. J. Li, Y. Yu, L. Zhang, Nanoscale 6, 8473 (2014)

    Article  Google Scholar 

  7. L. Zhang, W. Wang, Nanostructured Photocatalysts, (Springer, New York, 2016)

    Google Scholar 

  8. C. Huang, J. Hu, S. Cong, Z. Zhao, X. Qiu, Appl. Catal. B 174, 105 (2015)

    Article  Google Scholar 

  9. C.-Y. Wang, Y.-J. Zhang, W.-K. Wang et al., Appl. Catal. B 221, 320 (2018)

    Article  Google Scholar 

  10. W.T. Li, W.Z. Huang, H. Zhou, H.Y. Yin, Y.F. Zheng, X.C. Song, J. Alloy. Compd. 638, 148 (2015)

    Article  Google Scholar 

  11. Z. Li, Y. Qu, K. Hu, M. Humayun, S. Chen, L. **g, Appl. Catal. B 203, 355 (2017)

    Article  Google Scholar 

  12. P. **ao, J. Lou, H. Zhang et al., Catal. Sci. Technol. 8, 201 (2018)

    Article  Google Scholar 

  13. H. Wang, X. Yuan, Y. Wu et al., Appl. Catal. B 209, 543 (2017)

    Article  Google Scholar 

  14. S. Weng, J. Hu, M. Lu et al., Appl. Catal. B 163, 205 (2015)

    Article  Google Scholar 

  15. J. Di, C. Chen, S.-Z. Yang et al., J. Mater. Chem. A 5, 14144 (2017)

    Article  Google Scholar 

  16. J. Di, J. **a, M. Ji et al., ACS Appl. Mater. Interfaces 7, 20111 (2015)

    Article  Google Scholar 

  17. C. Hao, Y. Yang, Y. Shen et al., Mater. Des. 89, 864 (2016)

    Article  Google Scholar 

  18. H. Li, J. Li, Z. Ai, F. Jia, L. Zhang, Angewandte Chemie. 57(1), 122–138 (2018)

    Article  Google Scholar 

  19. S. Wu, J. **ong, J. Sun et al., ACS Appl. Mater. Interfaces 9(19), 16620–16626 (2017)

    Article  Google Scholar 

  20. H. Li, J. Shang, H. Zhu, Z. Yang, Z. Ai, L. Zhang, ACS Catal. 6, 8276 (2016)

    Article  Google Scholar 

  21. L. Ye, K. Deng, F. Xu, L. Tian, T. Peng, L. Zan, Phys. Chem. Chem. Phys. 14, 82 (2012)

    Article  Google Scholar 

  22. D. Cui, L. Wang, K. Xu et al., J. Mater. Chem. A 6(5), 2193–2199 (2017)

    Article  Google Scholar 

  23. C. Hao, Y. Xu, M. Bao, X. Wang, H. Zhang, T. Li, J. Mater. Sci.: Mater. Electron. 28, 3119 (2017)

    Google Scholar 

  24. C. Hao, J. Wang, Q. Cheng, Y. Bai, X. Wang, Y. Yang, J. Photochem. Photobiol. A 332, 384 (2017)

    Article  Google Scholar 

  25. L. Zhang, Z. Han, W. Wang et al., Chem. A 21, 18089 (2015)

    Google Scholar 

  26. S. Weng, Z. Fang, Z. Wang, Z. Zheng, W. Feng, P. Liu, ACS Appl. Mater. Interfaces 6, 18423 (2014)

    Article  Google Scholar 

  27. J. Jiang, K. Zhao, X. **ao, L. Zhang, J. Am. Chem. Soc. 134, 4473 (2012)

    Article  Google Scholar 

  28. F. Zaera, A.J. Gellman, G.A. Somorjai, Acc. Chem. Res. 19, 24 (1986)

    Article  Google Scholar 

  29. Y. Mi, L. Wen, Z. Wang, D. Cao, Y. Fang, Y. Lei, Appl. Catal. B 176, 331 (2015)

    Article  Google Scholar 

  30. H. Li, T. Hu, J. Liu et al., Appl. Catal. B 182, 431 (2016)

    Article  Google Scholar 

  31. J. Hu, W. Fan, W. Ye, C. Huang, X. Qiu, Appl. Catal. B 158, 182 (2014)

    Article  Google Scholar 

  32. Y. Huang, H. Li, M.-S. Balogun et al., ACS Appl. Mater. Interfaces 6, 22920 (2014)

    Article  Google Scholar 

  33. X. **, C. Lv, X. Zhou et al., Appl. Catal. B 226, 53 (2018)

    Article  Google Scholar 

  34. Y. Cai, D. Li, J. Sun et al., Appl. Surf. Sci. (2018)

  35. L. Ye, Y. Su, X. **, H. **e, C. Zhang, Environ. Sci. 1, 90 (2014)

    Google Scholar 

  36. L. Ding, R. Wei, H. Chen, J. Hu, J. Li, Appl. Catal. B 172, 91 (2015)

    Google Scholar 

  37. K.-L. Zhang, C.-M. Liu, F.-Q. Huang, C. Zheng, W.-D. Wang, Appl. Catal. B 68, 125 (2006)

    Article  Google Scholar 

  38. B. Li, L. Shao, B. Zhang, R. Wang, M. Zhu, X. Gu, J. Colloid Interface Sci. 505, 653 (2017)

    Article  Google Scholar 

  39. D.-H. Wang, G.-Q. Gao, Y.-W. Zhang, L.-S. Zhou, A.-W. Xu, W. Chen, Nanoscale 4, 7780 (2012)

    Article  Google Scholar 

  40. F. Chang, Y. **e, J. Zhang et al., RSC Adv. 4, 28519 (2014)

    Article  Google Scholar 

  41. D. Mao, A. Yu, S. Ding et al., Appl. Surf. Sci. 389, 742 (2016)

    Article  Google Scholar 

  42. H. Huang, X. Han, X. Li, S. Wang, P.K. Chu, Y. Zhang, ACS Appl. Mater. Interfaces 7, 482 (2015)

    Article  Google Scholar 

  43. M. Zhu, Q. Liu, W. Chen et al., ACS Appl. Mater. Interfaces 9, 38832 (2017)

    Article  Google Scholar 

  44. F. Wu, X. Wang, S. Hu, C. Hao, H. Gao, S. Zhou, Int. J. Hydrog. Energy 42, 30098 (2017)

    Article  Google Scholar 

  45. S. Ning, L. Ding, Z. Lin et al., Appl. Catal. B 185, 203 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported from the International S&T Cooperation Program of Wuhan (2017030209020255), the Creative Research Groups Program of the Natural Science Foundation of Hubei (2017CFA026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongya Li, Haiming Xu or Dongsheng **a.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 134 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Li, D., Cai, Y. et al. Controllable synthesis of highly active BiOCl with different content oxygen vacancies. J Mater Sci: Mater Electron 29, 12241–12250 (2018). https://doi.org/10.1007/s10854-018-9335-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9335-2

Navigation