Log in

The heterojunction effect of Pd on TiO2 for visible light photocatalytic hydrogen generation via water splitting reaction and photodecolorization of trypan blue dye

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we reported synthesis of Pd/TiO2 NPs at 130 °C in 1 day using an ionic liquid assisted hydrothermal method using methoxyethyl methyl imidazolium methanesulfonate as the ionic liquid, Titanium (IV) isopropoxide and Palladium nitrate as precursors. Physico-chemical properties of the obtained photocatalysts were investigated via thorough characterizations. The framework substitution of Pd in TiO2 NPs was established by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS) techniques. X-ray diffraction (XRD) and transmission electron microscopy (TEM) image results confirmed the anatase phase and nanocrystalline nature of Pd/TiO2. The optical properties revealed an extended tailing of the absorption edge toward the visible region upon Pd heterojunction. The concentration of Pd in the TiO2 matrix has been fine-tuned to improve the hydrogen production, and Photodecolorization of trypan blue dye. The synergy between the Pd and TiO2 has an optimum for concentration of 0.3 wt% Pd doped TiO2. The optimized product has produced promising hydrogen evolution of 1250 µmol g−1 under illumination with a visible light source in a water/ethanol system. The optimized product has shown promising photocatalytic detoxification ability of the material towards trypan blue dye was explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X. Zhang, Y. Sun, X. Cui, Z. Jiang, Int. J. Hydrog. Energy 37, 811–815 (2012)

    Article  Google Scholar 

  2. N. Meng, K.H.M. Leung, Y.C.L. Dennis, K. Sumathy, Renew. Sustain. Energy Rev. 11, 401–425 (2007)

    Article  Google Scholar 

  3. G. Nagaraju, T.N. Ravishankar, K. Manjunatha, S. Sarkar, H. Nagabhushana, R. Goncalves, J. Dupont, Mater. Lett 109, 27–30 (2013)

    Article  Google Scholar 

  4. J.H. Park, S. Kim, A.J. Bard, Nano Lett. 6, 24–28 (2006)

    Article  Google Scholar 

  5. T.N. Ravishankar, T. Ramakrishnappa, H. Nagabhushana, V.S. Souza, J. Dupont, G. Nagaraju., New J. Chem. 39, 1421–1429 (2014)

    Article  Google Scholar 

  6. C. Burda, Y. Lou, X. Chen, A.C.S. Samia, J. Stout, J.L. Gole, Nano Lett. 3, 1049–1051 (2003)

    Article  Google Scholar 

  7. F. Dong, S. Guo, H. Wang, X. Li, Z. Wu, J. Phys. Chem. C 115, 13285–13292 (2011)

    Article  Google Scholar 

  8. T.N. Ravishankar, M. O. Vaz, S. Khan, T. Ramakrishnappa, S.R. Teixeira, G.R. Balakrishna, G. Nagaraju, J. Dupont, New J. Chem. 40, 3578–3587 (2016)

    Article  Google Scholar 

  9. X. Chen, C. Burda., J. Am. Chem. Soc. 130, 5018–5019 (2008)

    Article  Google Scholar 

  10. R. Sasikala, A.R. Shirole, V. Sudarsan, S.R. Bharadwaj, Appl. Catal. A: Gen. 377, 47–54 (2010)

    Article  Google Scholar 

  11. L. Ge, C. Han, X. **ao, L. Guo., Int. J. Hydrog. Energy 38, 6960–6969 (2013)

    Article  Google Scholar 

  12. P. Kar, Y. Zhang, N. Mahdi, U.K. Thakur, B.D. Wiltshire, R. Kisslinger, K. Shankar, Nanotechnology 29(1), 014002 (2017)

    Article  Google Scholar 

  13. D. Chen, Z. Jiang, J. Geng, Q. Wang, D. Yang, Ind. Eng. Chem. Res. 46, 2741–2746 (2007)

    Article  Google Scholar 

  14. M. Yao, J. Zhao, L. Shanshan, L. Kathy, Ceram. Int. 43, 6925–6931 (2017)

    Article  Google Scholar 

  15. S. Farsinezhad, T. Shanavas, N. Mahdi, A.M. Askar, P. Kar, H. Sharma, K. Shankar, Nanotechnology 29(15), 154006 (2018)

    Article  Google Scholar 

  16. X. Chen, D. Kuo, D. Lu, Adv. Powder Technol. 28, 1213–1220 (2017)

    Article  Google Scholar 

  17. Y. Peng, G. Huang, W. Huang, Adv. Powder Technol. 23, 8–12 (2012)

    Article  Google Scholar 

  18. P. Kar, Y. Zhang, S. Farsinezhad, A. Mohammadpour, B.D. Wiltshire, H. Sharma, K. Shankar, Chem. Commun. 51, 7816–7819 (2015)

    Article  Google Scholar 

  19. J. Dupont, C.S. Consorti, P.A.Z. Suarez, R. F. de Souza, Org. Synth. 79, 236–240 (2002)

    Article  Google Scholar 

  20. A.K. Ramasami, T.N. Ravishankar, G. Nagaraju, T. Ramakrishnappa, S.R. Teixeira, R.G. Balakrishna, Bull. Mater. Sci. 40, 345–354 (2017)

    Article  Google Scholar 

  21. Z. Song, J. Hrbek, R. Osgood, Nano Lett. 5, 1327–1332 (2005)

    Article  Google Scholar 

  22. S.S. Muniandy, N.H.M. Kaus, Z.T. Jiang, M. Altarawneh, H.L. Lee, RSC Adv. 7, 48083–4809 (2017)

    Article  Google Scholar 

  23. L. **ong Bin, J.L. Li, B. Yang, Y. Yu, J. Nanomater. 2, 1–12 (2012)

    Google Scholar 

  24. S. Chenakin, N. Kruse, J. Catal. 358, 224–236 (2018)

    Article  Google Scholar 

  25. A.N. Banerjee, N. Hamnabard, S.W. Joo, Ceram. Int. 42, 12010–12026 (2016)

    Article  Google Scholar 

  26. C. Liao, C. Huang, C. Jeffrey, S. Wu, Catalysts 2, 490–495 (2012)

    Article  Google Scholar 

  27. Y. Nosaka, A.Y. Nosaka., J. Phys. Chem. Lett. 7, 431–434 (2016)

    Article  Google Scholar 

  28. K. Gelderman, L. Lee, S.W. Donne, J. Chem. Educ. 84, 685–688 (2007)

    Article  Google Scholar 

  29. S. Wang, L. Chen, J. Zhang, Super Lattices Microstruct. 104, 341–348 (2017)

    Article  Google Scholar 

  30. S. Verma, R. Dutta., J. Environ. Chem. Eng. 5, 4776–4787 (2017)

    Article  Google Scholar 

  31. B.P. Nenavathu, A.V.R. Krishna Rao, A. Goyal, A. Kapoor, R. Dutta., Appl. Catal. A 459, 106–113 (2013)

    Article  Google Scholar 

  32. Y. Shi, D. Yang, Y. Li, J. Qu, Z. Yu, Appl. Surf. Sci. 426, 622–629 (2017)

    Article  Google Scholar 

  33. T.N. Ravishankar, G. Nagaraju, J. Dupont, Mat. Res. Bull. 78, 103–111 (2016)

    Article  Google Scholar 

  34. R. Velmurugan, B. Krishnakumar, M. Swaminathan, Mat. Sci. Semicond. Process. 27, 654–664 (2014)

    Article  Google Scholar 

  35. K.S. Sing, Pure Appl. Chem. 57, 603–619 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, Dr. T.N. Ravishankar wishes to acknowledge Dr. Sherdil Khan for his valuable suggestions, CNPq-TWAS, Brazil, for financial support and Laboratory of Thin Films and Nanostructure Fabrication (L3F nano), Institute of Physics, UFRGS, Brazil for research facilities. Global Academy of Technology, Bangalore, Karnataka, India for encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Ravishankar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravishankar, T.N., de O. Vaz, M., Ramakrishnappa, T. et al. The heterojunction effect of Pd on TiO2 for visible light photocatalytic hydrogen generation via water splitting reaction and photodecolorization of trypan blue dye. J Mater Sci: Mater Electron 29, 11132–11143 (2018). https://doi.org/10.1007/s10854-018-9197-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9197-7

Navigation