Log in

Photoelectrochemical impedance spectroscopy of electrodeposited hematite α-Fe2O3 thin films: effect of cycle numbers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, hematite (α-Fe2O3) onto (FTO)-coated glass substrates have been prepared by electrodeposition technique using cyclic voltammetry process. Various samples of α-Fe2O3 with cycle numbers varied between 25 and 300 were prepared. XRD analysis shows that all films crystallize in a rhombohedral phase of hematite with a preferential orientation along (104) direction. The variation in intensity of the principal peaks shows that the crystallinity of thin films was influenced by the cycle numbers or thickness. Surface morphology studies by scanning electron microscopy (SEM) showed that an increase in the cycle numbers causes an increase in the grain size and homogenous of the surface. Moreover, the optical analysis reveals that the band gap energy varied between 2.1 and 1.9 eV in terms of cycle numbers increase. On the other hand, the photo-electrochemical impedance spectroscopy (PEIS) data have been modeled using an equivalent circuit approach. Finally, from Mott–Schottky plot, the flat-band potential and carrier density of α-Fe2O3 thin films have been determined. The results reveal that all the films showed n-type semiconductor character with a flat band potential and a carrier density changed with cycle numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Landolo, B. Wickman, I. Zoric, A. Hellman, The rise of hematite: origin and strategies to reduce the high onset potential for the oxygen evolution reaction. J. Mater. Chem. A 33, 16896 (2015)

    Google Scholar 

  2. X. Yan, Y. Wu, D. Li, C. Luo, Y. Wang, J. Hu, G. Li, P. Li, H. Jiang, W. Zhang, Facile synthesis of ring-like α-Fe2O3 assembly composed of small hematite particles for highly efficient potocatalysis., J. Mater. Sci.: Mater. Electron. https://doi.org/10.1007/s10854-017-8186-6

  3. S.A. Jadhav, R. Bongiovanni, D.L. Marchisio, D. Fontana, C. Egger, Surface modification of iron oxide (Fe2O3) pigment particles with amino-functional polysiloxane for improved dispersion stability and hydrophobicity. Pigm. Resin. Technol. 43, 219–227 (2014)

    CAS  Google Scholar 

  4. M. Dai, L. Zhao, H. Gao, P. Sun, F. Liu, S. Zhang, K. Shimanoe, N. Yamazoe, G. Lu, Hierarchical assembly of α-Fe2O3 nanorods on multiwall carbon nanotubes as a high-performance sensing material for gas sensors. ACS Appl. Mater. Interfaces 9, 8919–8928 (2017)

    CAS  Google Scholar 

  5. P.D. More, P.R. Jadhav, A.A. Ghanwat, I.A. Dhole, Y.H. Navale, V.B. Patil, Spray synthesized hydrophobic α-Fe2O3 thin film electrodes for supercapacitor application. J. Mater. Sci.: Mater. Electron. 28, 1–10 (2017)

    Google Scholar 

  6. A. Lassoued, B. Dkhil, A. Gadri, S. Ammar, Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results Phys. 7, 3007–3015 (2017)

    Google Scholar 

  7. A. Badawi, E.M. Ahmed, N.Y. Mostafa, F. Abdel-Wahab, S.E. Alomairy, Enhancement of the optical and mechanical properties of chitosan using Fe2O3 nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 10877–10884 (2017)

    CAS  Google Scholar 

  8. H. Katsuki, E.K. Choi, W.J. Lee, W.S. Cho, K.T. Hwang, W. Huang, S. Komarnenic, Controlled synthesis of hexagonal α-Fe2O3 crystals for ceramic colors by hydrothermal reaction of FeCl3 and NaOH solutions. Ceram. Int. 34, 14050–14056 (2017)

    Google Scholar 

  9. S.S. Shendage, U.B. Patil, J.M. Nagarkar, Electrochemical deposition of highly dispersed palladium nanoparticles on nafion-graphene film in presence of ferrous ions for ethanol electrooxidation. Fuel Cells 13, 364–370 (2013)

    CAS  Google Scholar 

  10. L. Li, C. Chang, H. Wu, J. Shiu, P. Wu, E. Diau, Morphological control of platinum nanostructures for highly efficient dye-sensitized solar cells. J. Mater. Chem. 22, 6267–6273 (2012)

    CAS  Google Scholar 

  11. M. Vanags, A. Šutka, J. Kleperis, P. Shipkovs, Comparison of the electrochemical properties of hematite thin films prepared by spray pyrolysis and electrodeposition. J. Ceram. Inter. 41, 9024–9029 (2015)

    CAS  Google Scholar 

  12. Q. Meng, Z. Wang, X. Chai, Z. Weng, R. Ding, L. Dong, Fabrication of hematite (α-Fe2O3) nanoparticles using electrochemical deposition. J. Appl. Surf. Sci. 368, 303–308 (2016)

    CAS  Google Scholar 

  13. G. Iervolino, I. Antis, L. Sygellou, V. Vaiano, D. Sannino, P. Lianos, Photocurrent increase by metal modification of Fe2O3 photoanodes and its effect on photoelectrocatalytic hydrogen production by degradation of organic substances. J. Appl. Surf. Sci. 400, 176–183 (2017)

    CAS  Google Scholar 

  14. S.L. Kadam, P.M. Padwal, S.M. Mane, S.B. Kulkarni, Electrodeposition of Fe2O3 nanoparticles and its supercapacitive properties, AIP Conference Proceedings (2016)

  15. Y. Liu, Y. **ang Yu, W.D. Zhang, Photoelectrochemical properties of Ni-doped Fe2O3 thin films prepared by electrodeposition. J. Electrochim. Acta 59, 121–127 (2012)

    Google Scholar 

  16. Z. Braiek, M. Gannouni, I.B. Assaker, A. Bardaoui, A. Lamouchi, A. Brayek, R. Chtourou, Correlation between physical properties and growth mechanism of In2S3 thin films fabricated by electrodeposition technique with different deposition times. Eur. Phys. J. Appl. Phys. 72, 10302 (2015)

    Google Scholar 

  17. S.H. Tamboli, G. Rahman, O.S. Joo, Influence of potential, deposition time and annealing temperature on photoelectrochemical properties of electrodeposited iron oxide thin films. J. Alloy. Compd. 520, 232–237 (2012)

    CAS  Google Scholar 

  18. P.S. Shinde, A. Annamalai, J.H. Kim, S.H. Choi, J.S. Lee, J.S. Jang, Photoelectrochemical, impedance and optical data for self Sn-diffusion doped Fe2O3 photoanodes fabricated at high temperature by one and two-step annealing methods. J. Data Brief 5, 796–804 (2015)

    Google Scholar 

  19. A.K. Shwarsctein, Y.S. Hu, A.J. Forman, G.D. Stucky, E.W. McFarland, Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J. Phys. Chem. 112, 15900–15907 (2008)

    Google Scholar 

  20. Y.W. Phuana, W.J. Ongc, M.N. Chonga, J.D. Ocone, Prospects of electrochemically synthesized hematite photoanodes for photoelectrochemical water splitting: a review. J. Photochem. Photobiol. C 33, 54–82 (2017)

    Google Scholar 

  21. R. Schrebler, K. Bello, F. Vera, P. Cury, E. Muñoz, R.d.. Río, H.G. Meier, R.C. Órdova, E.A. Dalchiele, An electrochemical deposition route for obtaining α-Fe2O3 thin films. Electrochem. Solid-State Lett. 9, 110–113 (2006)

    Google Scholar 

  22. F. Bouhjar, S. Ullah, M.L. Chourou, M. Mollar, B. Mar, B. Bessais, Electrochemical fabrication and characterization of p-CuSCN/n-Fe2O3 heterojunction devices for hydrogen production. J. Electrochem. Soc. 164, 936–945 (2017)

    Google Scholar 

  23. Y. Liu, Z. Xu, M. Yin, H. Fan, W. Cheng, L. Lu, Y. Song, J. Ma, X. Zhu, Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3. Nanoscale Res. Lett. (2015). https://doi.org/10.1186/s11671-015-1077-y

    Article  Google Scholar 

  24. M. Gannouni, I.B. Assaker, R. Chtourou, Role of deposition time on structural, optical and electrical properties of In-rich Cu–In–S spinel films grown by electrodeposition technique. Superlattices Microstruct. 61, 22–32 (2013)

    CAS  Google Scholar 

  25. N. Khedmi, M. Ben Rabeh, M. Kanzari, Thickness dependent structural and optical properties of vacuum evaporated CuIn5S8 thin films. Energy Procedia 44, 61–68 (2014)

    CAS  Google Scholar 

  26. B.E. Warren, X-ray diffraction. (Dover, New York, 1990)

    Google Scholar 

  27. P.P. Sahay, R.K. Nath, Al-doped ZnO thin films as methanol sensors. Sens. Actuators B 2, 654–659 (2008)

    Google Scholar 

  28. S. Thanikaikarasan, T. Mahalingam, M. Raja, T. Kim, Characterization of electroplated FeSe thin films. J. Mater Sci. 20, 727–734 (2009)

    CAS  Google Scholar 

  29. H. Maghraoui-Meherzi, T. Ben Nasr, N. Kamoun, M. Dachraoui, Structural, morphology and optical properties of chemically deposited Sb2S3 thin films. Phys. B 405, 3101–3105 (2010)

    CAS  Google Scholar 

  30. S. Sakurai, S. Kuroki, H. Tokoro, K. Hashimoto, S. Ohkoshi, Synthesis, crystal structure, and magnetic properties of ε-InxFe2–xO3 nanorod-shaped magnets. Adv. Func. Mater. 17, 2278–2282 (2007)

    CAS  Google Scholar 

  31. D. Maiti, V. Aravindan, S. Madhavi, P. Sujatha, Devi, Electrochemical performance of hematite nanoparticles derived from spherical maghemite and elongated goethite particles. J. Power Sources 276, 291–298 (2015)

    CAS  Google Scholar 

  32. G. Iervolino, L. Tantis, L. Sygellou, V. Vaiano, D. Sannino, P. Lianos, Photocurrent increase by metal modification of Fe2O3 photoanodes and its effect on photoelectrocatalytic hydrogen production by degradation of organic substances. J. Appl. Surf. Sci. 400, 176–183 (2017)

    CAS  Google Scholar 

  33. J. Cai, S. li, Z. Li, J. Wang, Y. Ren, G. Qin, Electrodeposition of Sn-doped hollow α-Fe2O3 nanostructuresfor photoelectrochemical water splitting. J. Alloy. Compd. 574, 421–426 (2013)

    CAS  Google Scholar 

  34. L. Li, C. Liu, Y. Qiu, N. Mitsuzak, Z. Chen, The influence of the hydrothermal temperature and time on morphology and photoelectrochemical response of α-Fe2O3 photoanode. J. Alloy. Compd. 696, 980–987 (2017)

    CAS  Google Scholar 

  35. N.F. Habubi, S.S. Chiad, K.H. Abass, M.M. Abood, Annealing effects on the some optical properties of Fe2O3 thin films doped NiO. Int. J. Eng. Technol. 8, 44–50 (2016)

    CAS  Google Scholar 

  36. X.G. Wen, S.H. Wang, Y. Ding, Z.L. Wang, S.H. Yang, Controlled growth of large-area, uniform, vertically aligned arrays of a-Fe2O3 nanobelts and nanowires. J. Phys. Chem. B. 109, 215–220 (2005)

    CAS  Google Scholar 

  37. J.I. Pankoye, Optical processes in semiconductors. (Prentice-Hall, Englewood Cliffs, 1971)

    Google Scholar 

  38. Y. Akaltun, M.A. Yıldırım, A. Ateş, M. Yıldırım, The relationship between refractive index-energy gap and the film thickness effect on the characteristic parameters of CdSe thin films. J. Optics Commun. 284, 2307–2311 (2011)

    CAS  Google Scholar 

  39. N. Khedmi, M. Ben Rabeh, M. Kanzari, Structural morphological and optical properties of SnSb2S4 thin films grown by vacuum evaporation method. J. Mater. Sci. Technol. 30, 1006–1011 (2014)

    CAS  Google Scholar 

  40. T.V. Nguyen, H.C. Lee, O.B. Yang, The effect of pre-thermal treatment of TiO2 nano-particles on the performances of dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells. 90, 967–981 (2006)

    CAS  Google Scholar 

  41. J. Van de Lagemaat, N.G. Park, A.J. Frank, Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: a study by electrical impedance and optical modulation techniques. J. Phys. Chem. B. 104, 2044–2052 (2000)

    Google Scholar 

  42. J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, N.S. Ferriols, P. Bogdanoff, E.C. Pereira, Theory of the impedance of electron diffusion and recombination in a thin layer. J. Phys. Chem. B 106, 325–333 (2002)

    CAS  Google Scholar 

  43. Q. Wu, J. Ouyang, K.P. **e, L. Sun, M. Wang, C. Lin, Ultrasound-assisted synthesis and visible-light-driven photocatalytic activity of Fe-incorporated TiO2 nanotube array photocatalysts. J. Hazard. Mater. 410, 199–200 (2012)

    Google Scholar 

  44. M. Gannouni, I.B. Assaker, R. Chtourou, Experimental investigation of the effect of indium content on the CuIn5S8 electrodes using electrochemical impedance spectroscopy. Mater. Res. Bull. 61, 519–527 (2015)

    CAS  Google Scholar 

  45. N. Arbi, I.B. Assaker, M. Gannouni, A. Kriaa, R. Chtourou, Effect of manganese concentration on physical and electrochemical properties of Mn2+-doped ZnS thin films deposited onto ITO-glass) substrates by electrodeposition technique. J. Mater. Sci.: Mater. Electron. 28, 4997–5005 (2017)

    CAS  Google Scholar 

  46. S.K. Mishra, D. Kumar, A.M. Biradar, Rajesh, Electrochemical impedance spectroscopy characterization of mercaptopropionic acid capped ZnS nanocrystal based bioelectrode for the detection of the cardiac biomarker: myoglobin. J. Bioelectrochem. 88, 118–126 (2012)

    CAS  Google Scholar 

  47. O. Messaoudi, I. Benassaker, M. Gannouni, A. Souissi, H. Makhlouf, A. Bardaoui, R. Chtourou, Structural, morphological and electrical characteristics of electrodeposited Cu2O: effect of deposition time. Appl. Surf. Sci. 366, 383–388 (2016)

    CAS  Google Scholar 

  48. S.R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes (Plenum Press, New York, 1980)

    Google Scholar 

  49. P.S. Shinde, G.H. Go, W.J. Lee, Facile growth of hierarchical hematite (α-Fe2O3) nanopetals on FTO by pulse reverse electrodeposition for photoelectrochemical water splitting. J. Mater. Chem. 22, 10469–10471 (2012)

    CAS  Google Scholar 

  50. C. Zeng, Y. Bai, Y. Ling, Z. **n, H. Liang, X. Deng, Hydrogen interaction characteristic of nanoscale oxide films grown on iron nickel based stainless steel by selective thermal oxidation. Int. J. Hydrog. Energy 42, 1–12 (2017)

    Google Scholar 

  51. Q. Liu, C. Chen, G. Yuan, X. Huang, X. Lü, Y. Cao, Y. Li, A. Hu, X. Lu, P. Zhu,Morphology-controlled α-Fe2O3 nanostructures on FTO substrates for photoelectrochemical water oxidation. J. Alloy. Compd. 715, 230–236 (2017)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ben Assaker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landolsi, Z., Assaker, I.B., Chtourou, R. et al. Photoelectrochemical impedance spectroscopy of electrodeposited hematite α-Fe2O3 thin films: effect of cycle numbers. J Mater Sci: Mater Electron 29, 8176–8187 (2018). https://doi.org/10.1007/s10854-018-8824-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8824-7

Navigation