Log in

Mechanical reliability of transient liquid phase bonding of Au–Sn solder with Ni(Cu) substrates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mechanical reliability of transient liquid phase (TLP) bonded Au–Sn/Ni(Cu) joints was investigated in this study. The results show that the TLP bonded Au–Sn/Ni(Cu) joints have excellent mechanical performance, even after exposed at 400 or 450 °C, especially in Au–Sn/Ni–30Cu and Au–Sn/Ni–40Cu systems. The shear strength could reach 75 MPa in TLP bonded Au–Sn/Ni–40Cu joint and increased to 87 and 97 MPa after exposed at 400 or 450 °C for 24 h, respectively. It was found that during TLP bonding at 350 °C, ordered AuCu, Ni3Sn2, and α(Au) phases formed in the Au–Sn/Ni–Cu joints, then the ordered AuCu phase transferred to disordered (Au,Cu) phase and a new Ni3Sn phase appeared between substrate (Au,Cu) and the Ni3Sn2 layers after exposure at 400 or 450 °C. However, only Ni3Sn2 layer formed after TLP bonded and new Ni3Sn layer appeared near substrate after exposure at 400 or 450 °C in the Au–Sn/Ni bonding system. The ductile Au–Cu [ordered AuCu or disordered (Au,Cu)] layer releases local stress concentration in joint under shear stress, which improves the mechanical reliability. Moreover, the maximum stress in Au–Sn/Ni(Cu) joints decreases with the increasing thickness of Au–Cu layer. As a result, the Au–Sn/Ni joint presents lower shear strength as brittle Ni3Sn or Ni3Sn2 layer formed near substrate, whereas the shear strength of Au–Sn/Ni–Cu joint increases with thicker Au–Cu layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.F. Li, P.A. Agyakwa, C.M. Johnson, Acta Mater. 59, 1198–1211 (2011)

    Article  Google Scholar 

  2. M.S. Park, S.L. Gibbons, R. Arróyave, Acta Mater. 60, 6278–6287 (2012)

    Article  Google Scholar 

  3. S.R. Cain, J.R. Wilcox, R. Venkatraman, Acta Mater. 45, 701–707 (1997)

    Article  Google Scholar 

  4. T.C. Illingworth, I.O. Golosnoy, T.W. Clyne, Mater. Sci. Eng A 445 493–500 (2007)

    Article  Google Scholar 

  5. H. Assadi, A.A. Shirzadi, E.R. Wallach, Acta Mater. 49, 31–39 (2001)

    Article  Google Scholar 

  6. J.F. Li, P.A. Agyakwa, C.M. Johnson, Acta Mater. 58, 3429–3443 (2010)

    Article  Google Scholar 

  7. N.S. Bosco, F.W. Zok, Acta Mater. 53, 2019–2027 (2005)

    Article  Google Scholar 

  8. W. Liu, Y. Wang, Y. Ma, Q. Yu, Y. Huang, Mater. Sci. Eng. A 651, 626–635 (2016)

    Article  Google Scholar 

  9. H. Shao, A. Wu, Y. Bao, Y. Zhao, G. Zou, Mater. Sci. Eng. A 680, 221–231 (2017)

    Article  Google Scholar 

  10. A. Sharif, C.L. Gan, Z. Chen, J. Alloys Compd. 587, 365–368 (2014)

    Article  Google Scholar 

  11. O. Mokhtari, H. Nishikawa, J. Mater. Sci. 27, 4232–4244 (2016)

    Google Scholar 

  12. K. Chu, Y. Sohn, C. Moon, Scripta Mater. 109, 113–117 (2015)

    Article  Google Scholar 

  13. W. Zhang, W. Ruythooren, J. Electron. Mater. 37, 1095–1101 (2008)

    Article  Google Scholar 

  14. S. Sommadossi, L. Litynska, P. Zieba, W. Gust, E.J. Mittemeijer, Mater. Chem. Phys. 81, 566–568 (2003)

    Article  Google Scholar 

  15. J.W. Elmer, R.P. Mulay, Scripta Mater. 120, 14–18 (2016)

    Article  Google Scholar 

  16. Y. Wang, W. Liu, Y. Ma, Y. Huang, Y. Tang, F. Che ng, Q. Yu, Mater. Sci. Eng. A 610, 161–170 (2014)

    Article  Google Scholar 

  17. Z.X. Zhu, C.C. Li, L.L. Liao, C.K. Liu, C.R. Kao, J. Alloys Compd. 671, 340–345 (2016)

    Article  Google Scholar 

  18. J. Peng, R.C. Wang, M. Wang, H.S. Liu, J. Electron. Mater. 46, 2021–2029 (2017)

    Article  Google Scholar 

  19. X.F. Wei, Y.K. Zhang, R.C. Wang, Y. Feng, Microelectron. Reliab. 5, 748 (2013)

    Article  Google Scholar 

  20. H.G. Song, J.W. Morris, M.T. Mccormack, J. Electron. Mater. 29, 1038 (2000)

    Article  Google Scholar 

  21. H.Q. Dong, V. Vuorinen, T. Laurila, M. Paulasto-Kröckel, Calphad 43, 61–70 (2013)

    Article  Google Scholar 

  22. H.Q. Dong, V. Vuorinen, X.M. Tao, T. Laurila, M. Paulasto-Kröckel, J. Alloys Compd. 588, 449–460 (2014)

    Article  Google Scholar 

  23. N. Chawla, R.S. Sidhu, J. Mater. Sci. 18, 175–189 (2007)

    Google Scholar 

  24. D.G. Kim, H.S. Jang, J.W. Kim, S.B. Jung, J. Mater. Sci. 16, 603–609 (2005)

    Article  Google Scholar 

  25. T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R 49, 1–60 (2005)

    Article  Google Scholar 

  26. H.B. Qin, X.P. Zhang, M.B. Zhou, J.B. Zeng, Y.W. Mai, Mater. Sci. Eng. A 617, 14–23 (2014)

    Article  Google Scholar 

  27. S.-M. Joo, H.-K. Kim, Mater. Sci. Eng. A 528, 2711–2717 (2011)

    Article  Google Scholar 

  28. Y. Tian, P. Wu, Z. Lu, J. Electron. Mater. 46, 616–626 (2016)

    Article  Google Scholar 

  29. L.H. Li, W.L. Wang, B. Wei, Comput. Mater. Sci. 99, 274–284 (2015)

    Article  Google Scholar 

  30. H.Q. Dong, V. Vuorinen, X.W. Liu, T. Laurila, J. Li, M. Paulasto-Kröckel, J. Electron. Mater. 45, 566–575 (2015)

    Article  Google Scholar 

  31. J. Lohmiller, N.C. Woo, R. Spolenak, Mater. Sci. Eng. A 527, 7731–7740 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported from the National Science and Technology Major Project of the Ministry of Science and Technology of China (2017YFB0305700) and National Key Fundamental Research Project of China (JPPT-125-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Wang, R.C., Liu, H.S. et al. Mechanical reliability of transient liquid phase bonding of Au–Sn solder with Ni(Cu) substrates. J Mater Sci: Mater Electron 29, 313–322 (2018). https://doi.org/10.1007/s10854-017-7918-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7918-y

Navigation