Log in

Improved microwave absorption properties of core–shell type Ni@SiC nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SiC coated Ni nanocomposites were fabricated by a facile arc-discharge method. XRD, HRTEM and XPS technologies indicate that as-prepared Ni@SiC nanocomposites consist of the Ni nanoparticles core and shells composed of crystalline SiC together with a few C/SiOx. The Ni@SiC nanocomposites absorbent present excellent microwave absorption in C–Ku band. The strongest reflection loss (RL) of Ni@SiC-parrafin composites achieve −42.1 dB at 11.2 GHz with its absorption bandwidth below −10 dB covering the whole X band at a matching thickness of 2.88 mm. Moreover, the RL values of Ni@SiC nanocomposites absorbent below −10 dB are about 1.6–2.5 times of those of the Ni nanoparticles absorbent at absorbent thicknesses of 1.4–5.5 mm. Furthermore, the maximum absorption bandwidth exceeding −10 dB is about 7.2 (6.2–13.4 GHz) for Ni@SiC-paraffin composites at a relatively thin matching thickness of 3.0 mm, covering the almost half C band and the whole X band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.W. Jiang, Z.H. Wang, D.Y. Geng, Y.M. Lin, Y. Wang, J. An, J. He, D. Li, W. Liu, Z.D. Zhang, Structure and electromagnetic properties of both regular and defective onion-like carbon nanoparticles. Carbon 95, 910–918 (2015)

    Article  Google Scholar 

  2. X.F. Zhang, Y. Rao, J.J. Guo, G.W. Qin, Multiple-phase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption. Carbon 96, 972–979 (2016)

    Article  Google Scholar 

  3. Q. Li, X.W. Yin, W.Y. Duan, L. Kong, B.L. Hao, F. Ye, Electrical, dielectric and microwave-absorption properties of polymer derived SiC ceramics in X band. J. Alloys. Compd. 565, 66–72 (2013)

    Article  Google Scholar 

  4. H.P. Xu, Z.M. Dang, M.J. Jiang, S.H. Yao, J. Bai, Enhanced dielectric properties and positive temperature coefficient effect in the binary polymer composites with surface modified carbon black. J. Mater. Chem. 18, 229–234 (2008)

    Article  Google Scholar 

  5. X.L. Su, Y. Jia, J.B. Wang, J. Xu, X.H. He, C. Fu, S.T. Liu, Combustion synthesis and microwave absorption property of SiC(Fe) solid solution powder under different reaction time. J. Mater. Sci. 24, 1905–1912 (2013)

    Google Scholar 

  6. S. Agathopoulos, Influence of synthesis process on the dielectric properties of B-doped SiC powders. Ceram. Int. 38, 3309–3315 (2012)

    Article  Google Scholar 

  7. X. Su, W. Zhou, J. Xu, J. Wang, X. He, C. Fu, Z. Li, Preparation and dielectric property of Al and N co-doped SiC powder by combustion synthesis. J. Am. Ceram. Soc. 95, 1388–1393 (2012)

    Article  Google Scholar 

  8. A. B. Kheradmand, Z. Lalegani, Electromagnetic interference shielding effectiveness of Al/SiC composite foams. J. Mater. Sci. 26,7530–7536 (2015)

    Google Scholar 

  9. D. Li, H. **, M. Cao, T. Chen, Y. Dou, B. Wen, S. Agathopoulos, Production of Ni-doped SiC nanopowders and their dielectric properties. J. Am. Ceram. Soc. 94, 1523–1527 (2011)

    Article  Google Scholar 

  10. Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R.C. Che, CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2015)

    Article  Google Scholar 

  11. B. Zhao, G. Shao, B.B. Fan, W.Y. Zhao, Y.J. **e, R. Zhang, Facile preparation and enhanced microwave absorption properties of core–shell composite spheres composited of Ni cores and TiO2 shells. Phys.Chem.Chem.Phys. 17, 8802–8810 (2015)

    Article  Google Scholar 

  12. X. Ding, Y. Huang, J.G. Wang, H.W. Wu, P.B. Liu, Excellent electromagnetic wave absorption property of quaternary composites consisting of reduced graphene oxide, polyaniline and FeNi3@SiO2 nanoparticles. Appl. Surf. Sci. 357, 908–914 (2015)

    Article  Google Scholar 

  13. B. Wang, J. Zhang, T. Wang, L. Qiao, F. Li, Synthesis and enhanced microwave absorption properties of Ni@Ni2O3 core–shell particles. J. Alloys. Compd. 567, 21–25(2013)

    Article  Google Scholar 

  14. B. Zhao, G. Shao, B.B. Fan, W.Y. Zhao, R. Zhang, Enhanced microwave absorption capabilities of Ni microspheres after coating with SnO2 nanoparticles. J. Mater. Sci. 26, 5393–5399(2015)

    Google Scholar 

  15. X. Liu, C. Feng, S. W. Or, Y. Sun, C. **, W. Li and Y. Lv, Investigation on microwave absorption properties of CuO/Cu2O-coated Ni nanocapsules as wide-band microwave absorbers. RSC Adv. 3, 14590–14594 (2013)

    Article  Google Scholar 

  16. X.L. Dong, X.F. Zhang, H. Huang, F. Zuo, Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations. Appl. Phys. Lett. 92, 013127–013123 (2008)

    Article  Google Scholar 

  17. H. Wang, H. Guo, Y. Dai, D. Geng, Z. Han, D. Li, T. Yang, S. Ma, W. Liu, Z. Zhang, Optimal electromagnetic-wave absorption by enhanced dipole polarization in Ni/C nanocapsules. Appl. Phys. Lett. 101, 083116–083114 (2012)

    Article  Google Scholar 

  18. X.F. Zhang, H. Huang, X.L. Dong, Core/shell metal/heterogeneous oxide nanocapsules: the empirical formation law and tunable electromagnetic losses. J. Phys. Chem. C 117, 8563–8569 (2013)

    Article  Google Scholar 

  19. H. Wang, Y.Y. Dai, W.J. Gong, D.Y. Geng, S. Ma, D. Li, W. Liu, Z.D. Zhang, Broadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonances. Appl. Phys. Lett. 102, 223113–223114 (2013)

    Article  Google Scholar 

  20. G.M. Shi, Y.F. Li, L. Ai, F.N. Shi, Two step synthesis and enhanced microwave absorption properties of polycrystalline BaTiO3 coated Ni nanocomposites. J. Alloys. Compd. 680, 735–743 (2016)

    Article  Google Scholar 

  21. C.D. Wagner, W.M. Riggs, L.E. Davis et al., Handbook of X-ray photoelectron spectroscopy (Minnesota, Perkin-Elemer Corporation and Physical Electronics Division, 1979)

    Google Scholar 

  22. N.K. Huang, B. Yang, Q. **ong, Y. G. Liu, Effect of hydrogen on SiC–C films with AES and XPS analyses. Nucl. Sci. Tech. 14, 56–59(2003)

    Google Scholar 

  23. F. Arezzo, E. Severini, N. Zacchetti, An XPS study of diamond films grown on differently pretreated silicon substrates. Surf. Interface Anal. 22, 218–223 (1994)

    Article  Google Scholar 

  24. N.B. Hamzan, F.N.B. Nordin, S.A. Rahman et al., Effects of substrate temperature on the growth, structural and optical properties of NiSi/SiC core–shell nanowires. Appl. Surf. Sci. 343, 70–76 (2015)

    Article  Google Scholar 

  25. Y. Saito, T. Yoshikawa, M. Okuda, Synthesis and electron-beam incision of carbon nanocapsules encaging YC2. Chem. Phys. Lett. 299, 73–76 (1993)

    Google Scholar 

  26. X.F. Zhang, X.L. Dong, H. Huang, B. Lv, X.G. Zhu, J.P. Lei, S. Ma, W. Liu, Z.D. Zhang, Synthesis, structure and magnetic properties of SiO2-coated Fe nanocapsules. Mater. Sci. Eng. A 454–455, 211–215 (2007)

    Article  Google Scholar 

  27. C.H. Gong, X.X. Wang, X.F. Zhang, X.W. Zhao, H.J. Meng, Y.S. Ji, J.W. Zhang, Z.J. Zhang, Synthesis of Ni/SiO2 nanocomposites for tunable electromagnetic absorption. Mater. Lett. 121, 81–84 (2014)

    Article  Google Scholar 

  28. N.D. Wu, X.G. Liu, C.Y. Zhao, C.Y. Cui, A.L. **a, Effects of particle size on the magnetic and microwave absorption properties of carbon-coated nickel nanocapsules. J. Alloys Compd. 656, 628–634 (2016)

    Article  Google Scholar 

  29. Z.H. Wang, Z. Han, D.Y. Geng, Z.D. Zhang, Synthesis, characterization and microwave absorption of carbon-coated Sn nanorods. Chem. Phys. Lett. 489, 187–190 (2010)

    Article  Google Scholar 

  30. H.L. Lv, H.Q. Zhang, G.B. Ji, Z.C.J. Xu, Interface strategy to achieve tunable high frequency attenuation. ACS Appl. Mater. Interfaces 8, 6529–6538 (2016)

    Article  Google Scholar 

  31. S. He, C. Lu, G. S. Wang, J. W. Wang, H. Y. Guo, L. Guo, Synthesis and growth mechanism of white-fungus-like nickel sulfide microspheres, and their application in polymer composites with enhanced microwave-absorption properties. Chem. Plus. Chem. 79, 569–576(2014)

    Google Scholar 

  32. X.F. Zhang, X.L. Dong, H. Huang, B. Lv, J.P. Lei, C.J. Choi, Microstructure and microwave absorption properties of carbon-coated iron nanocapsules. J. Phys. D 40, 5383–5387 (2007)

    Article  Google Scholar 

  33. B. Lu, X.L. Dong, H. Huang, X.F. Zhang, X.G. Zhu, J.P. Lei, J.P. Sun, Microwave absorption properties of the core/shell-type iron and nickel nanoparticles. J. Magn. Magn. Mater. 320, 106–1111(2008)

    Article  Google Scholar 

  34. V.B. Bregar, Advantages of ferromagnetic nanoparticle composites in microwave absorbers. IEEE Trans. Magn. 40, 1679–1684 (2004)

    Article  Google Scholar 

  35. D.A. Dimitrov, G.M. Wysin, Magnetic properties of spherical fcc clusters with radial surface anisotropy. Phys. Rev. B 51, 11947–11950 (1995)

    Article  Google Scholar 

  36. H. Zhang, M. Hong, P. Chen, A.J. **e, Y.H. Shen, 3D and ternary rGO/MCNTs/Fe3O4 composite hydrogels: synthesis, characterization and their electromagnetic wave absorption properties. J. Alloys Compd. 665, 381–387 (2016)

    Article  Google Scholar 

  37. B. Zhao, G. Shao, B.B. Fan et al., Effect of the TiO2 amounts on microwave absorption properties of Ni/TiO2 heterostructure composites. Phys. B 454, 120–125 (2014)

    Article  Google Scholar 

  38. A.N. Yusoff, M.H. Abdullah, S.H. Ahmad, S.F. Jusoh, A.A. Mansor, S.A.A. Hamid, Electromagnetic and absorption properties of some microwave absorbers. J. Appl. Phys. 92, 876–882 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Science technology program of Shen Yang (F14-231-1-25) and the National Natural Science Foundation of China (21571132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Mei Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZJ., Shi, GM. & Zhao, Q. Improved microwave absorption properties of core–shell type Ni@SiC nanocomposites. J Mater Sci: Mater Electron 28, 5887–5897 (2017). https://doi.org/10.1007/s10854-016-6262-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6262-y

Keywords

Navigation