Log in

Facile synthesis of urchin-like ZnO nanostructures with enhanced optical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Novel urchin-like ZnO nanostructures were successfully synthesized via an electrodeposition-hydrothermal method and characterized using various analytical instruments. The as prepared samples were characterized by FESEM, XRD, UV–Vis, PL and photocatalytic test. And the effects of the electrodeposition time on the morphology, structure and optical properties have been investigated. In the FESEM, well defined shape of urchin-like ZnO nanostructures was generated. The band gaps of urchin-like ZnO nanostructures, determined from UV–Vis absorption spectra, are 3.13 eV. Photocatalytic investigation of ZnO nanostructures was carried out using methylene blue aqueous solution under UV–visible illumination. Urchin-like ZnO nanostructures prepared under 10 min showed enhanced photocatalytic performance in comparison with the others. The enhanced photocatalytic activity for urchin-like ZnO nanostructures might be resulting from the higher concentration of surface oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z.M. Chen, L.L. Liu, Q. Chen, One-pot template-free synthesis of urchin-like Co2C/Co3C hybrid nanoparticles. Mater. Lett. 164, 554–557 (2016)

    Article  Google Scholar 

  2. X.L. Kuang, T.M. Liu, Y.Y. Zhang, W.X. Wang, M.P. Yang, W. Zeng, S. Hussain, X.H. Peng, Urchin-like SnO2 nanoflowers via hydrothermal synthesis and their gas sensing properties. Mater. Lett. 161, 153–156 (2015)

    Article  Google Scholar 

  3. J. Elias, L. Philippe, J. Michler, C. Lévy-Clément, Mechanism of formation of urchin-like ZnO. Electrochim. Acta 56, 9532–9536 (2011)

    Article  Google Scholar 

  4. G.L. Wu, Y.H. Cheng, Q. **e, Z.R. Jia, F. **ang, H.J. Wu, Facile synthesis of urchin-like ZnO hollow spheres with enhanced electromagnetic wave absorption properties. Mater. Lett. 144, 157–160 (2015)

    Article  Google Scholar 

  5. Y.H. **ao, Z.C. Pan, X.L. Tian, H.C. Zhang, X.F. Zeng, C.M. **ao, G.H. Hu, Z.G. Wei, Time controlled synthesis of urchin-like zinc oxide and characterization of its optical properties. Mater. Lett. 131, 94–96 (2014)

    Article  Google Scholar 

  6. G.K. Mani, J.B.B. Rayappan, ZnO nanoarchitectures: ultrahigh sensitive room temperature acetaldehyde sensor. Sens. Actuators B 223, 343–351 (2016)

    Article  Google Scholar 

  7. J.L. Wang, C.J. Pei, L.J. Cheng, W.P. Wan, Q. Zhao, H.Q. Yang, S.Z. Liu, Responses of three-dimensional porous ZnO foam structures to the trace level of triethylamine and ethanol. Sens. Actuators B 223, 650–657 (2016)

    Article  Google Scholar 

  8. M. Bagheri, A.A. Khodadadi, A.R. Mahjoub, Y. Mortazavi, Gallia–ZnO nanohybrid sensors with dramatically higher sensitivity to ethanol in presence of CO, methane and VOCs. Sens. Actuators B 223, 576–585 (2016)

    Article  Google Scholar 

  9. J. Dai, M. Wang, M. Song, P.C. Li, C.Y. Zhang, A.J. **e, Y.H. Shen, A novel synthesis of ZnO/N-doped reduced graphene oxide composite as superior anode material for lithium–ion batteries. Scr. Mater. 112, 67–70 (2016)

    Article  Google Scholar 

  10. J. Elias, M. Bechelany, I. Utke, R. Erni, D. Hosseini, J. Michler, L. Philippe, Urchin-inspired zinc oxide as building blocks for nanostructured solar cells. Nano Energy 1, 696–705 (2012)

    Article  Google Scholar 

  11. X.L. Chen, J.M. Liu, J. Ni, Y. Zhao, X.D. Zhang, Wide-spectrum Mg and Ga co-doped ZnO TCO thin films for solar cells grown via magnetron sputtering with H2 introduction. Appl. Surf. Sci. 328, 193–197 (2015)

    Article  Google Scholar 

  12. Y.C. Ho, P.Y. Ho, H.C. Lee, S.K. Chang, Y.R. Hong, C.F. Lin, Enhancing performance of inverted polymer solar cells using two-growth ZnO nanorods. Sol. Energy Mater. Sol. Cells 132, 570–577 (2015)

    Article  Google Scholar 

  13. A. Yildiz, S. Uzun, N. Serin, T. Serin, Influence of grain boundaries on the figure of merit of undoped and Al, In, Sn doped ZnO thin films for photovoltaic applications. Scr. Mater. 113, 23–26 (2016)

    Article  Google Scholar 

  14. S.S. Patil, M.G. Mali, M.S. Tamboli, D.R. Patil, M.V. Kulkarni, H. Yoon, H. Kim, S.S. Al-Deyab, S.S. Yoon, S.S. Kolekar, B.B. Kale, Green approach for hierarchical nanostructured Ag–ZnO and their photocatalytic performance under sunlight. Catal. Today 260, 126–134 (2016)

    Article  Google Scholar 

  15. W.L. Yu, J.F. Zhang, T.Y. Peng, New insight into the enhanced photocatalytic activity of N-, C- and S-doped ZnO photocatalysts. Appl. Catal. B Environ. 181, 220–227 (2016)

    Article  Google Scholar 

  16. J. Liu, Z.Y. Hu, Y. Peng, H.W. Huang, Y. Li, M. Wu, X.X. Ke, G.V. Tendeloo, B.L. Su, 2D ZnO mesoporous single-crystal nanosheets with exposed 0001 polar facets for the depollution of cationic dye molecules by highly selective adsorption and photocatalytic decomposition. Appl. Catal. B 181, 138–145 (2016)

    Article  Google Scholar 

  17. J. Elias, R. Tena-Zaera, C. Lévy-Clément, Electrodeposition of ZnO nanowires with controlled dimensions for photovoltaic applications: role of buffer layer. Thin Solid Films 515, 8553–8557 (2007)

    Article  Google Scholar 

  18. J.F. Deng, Q.Y. Fu, W. Luo, X.H. Tong, J.H. **ong, Y.X. Hu, Z.P. Zheng, Enhanced H2S gas sensing properties of undoped ZnO nanocrystalline films from QDs by low-temperature processing. Sens. Actuators B 224, 153–158 (2016)

    Article  Google Scholar 

  19. N. Bouazizi, F. Ajala, A. Bettaibi, M. Khelil, A. Benghnia, R. Bargougui, S. Louhichi, L. Labiadh, R.B. Slama, B. Chaouachi, K. Khirouni, A. Houas, A. Azzouz, Metal-organo-zinc oxide materials: investigation on the structural, optical and electrical properties. J. Alloys Compd. 656, 146–153 (2016)

    Article  Google Scholar 

  20. R. Yousefi, F. Jamali-Sheini, A. Sa’aedi, A.K. Zak, M. Cheraghizade, S. Pilban-Jahromi, N.M. Huang, Influence of lead concentration on morphology and optical properties of Pb-doped ZnO nanowires. Ceram. Int. 39, 9115–9119 (2013)

    Article  Google Scholar 

  21. C.H. Kwak, H.S. Woo, F. Abdel-Hady, A.A. Wazzan, J.H. Lee, Vapor-phase growth of urchin-like Mg-doped ZnO nanowire networks and their application to highly sensitive and selective detection of ethanol. Sens. Actuators B 223, 527–534 (2016)

    Article  Google Scholar 

  22. T. Dixit, I.A. Palani, V. Singh, Selective tuning of enhancement in near band edge emission in hydrothermally grown ZnO nanorods coated with gold. J. Lumin. 170, 180–186 (2016)

    Article  Google Scholar 

  23. W. Kim, M. Baek, K. Yong, Fabrication of ZnO/CdS, ZnO/CdO core/shell nanorod arrays and investigation of their ethanol gas sensing properties. Sens. Actuators B 223, 599–605 (2016)

    Article  Google Scholar 

  24. K. Narimani, F.D. Nayeri, M. Kolahdouz, P. Ebrahimi, Fabrication, modeling and simulation of high sensitivity capacitive humidity sensors based on ZnO nanorods. Sens. Actuators B 224, 338–343 (2016)

    Article  Google Scholar 

  25. R. Khan, P. Uthirakumar, K.B. Bae, S.J. Leem, I.H. Lee, Localized surface plasmon enhanced photoluminescence of ZnO nanosheets by Au nanoparticles. Mater. Lett. 163, 8–11 (2016)

    Article  Google Scholar 

  26. J. Yang, Y.Q. Wang, J.H. Kong, H.X. Jia, Z.S. Wang, Synthesis of ZnO nanosheets via electrodeposition method and their optical properties, growth mechanism. Opt. Mater. 46, 179–185 (2015)

    Article  Google Scholar 

  27. P.X. Gao, C.S. Lao, Y. Ding, Z.L. Wang, Metal/semiconductor core/shell nanodisks and nanotubes. Adv. Funct. Mater. 16, 53–62 (2006)

    Article  Google Scholar 

  28. Z.X. Yang, W. Zhong, C.T. Au, X. Du, H.A. Song, X.S. Qi, X.J. Ye, M.H. Xu, Y.W. Du, Novel photoluminescence properties of magnetic Fe/ZnO composites: self-assembled ZnO nanospikes on Fe nanoparticles fabricated by hydrothermal method. J. Phys. Chem. C 113, 21269–21273 (2009)

    Article  Google Scholar 

  29. X.Y. Kong, Y. Ding, Z.L. Wang, Metal-semiconductor Zn–ZnO core-shell nanobelts and nanotubes. J. Phys. Chem. B 108, 570–574 (2004)

    Article  Google Scholar 

  30. J.C. Sin, S.M. Lam, K.T. Lee, A.R. Mohamed, Preparation of rare earth-doped ZnO hierarchical micro/nanospheres and their enhanced photocatalytic activity under visible light irradiation. Ceram. Int. 40, 5431–5440 (2014)

    Article  Google Scholar 

  31. K. Shingange, G.H. Mhlongo, D.E. Motaung, O.M. Ntwaeaborwa, Tailoring the sensing properties of microwave-assisted grown ZnO nanorods: effect of irradiation time on luminescence and magnetic. J. Alloys Compd. 657, 917–926 (2016)

    Article  Google Scholar 

  32. C.W. Cheng, H.F. Zhang, W.N. Ren, W.J. Dong, Y. Sun, Three dimensional urchin-like ordered hollow TiO2/ZnO nanorods structure as efficient photoelectron chemical anode. Nano Energy 2, 779–786 (2013)

    Article  Google Scholar 

  33. T.H. Chang, C.Y. Hsu, H.C. Lin, K.H. Chang, Y.Y. Li, Formation of urchin-like CuO structure through thermal oxidation and its field-emission lighting application. J. Alloys Compd. 644, 324–333 (2015)

    Article  Google Scholar 

  34. X.D. Ren, W.P. Dang, Q. Ma, X.J. Zhu, W. Zi, L.J. Jia, B. Liu, X.S. Zhang, F.W. **ao, H.Q. Yang, Z. Yang, S.Z. Liu, Superior texture-controlled ZnO thin film using electrochemical deposition. Sol. Energy 125, 192–197 (2016)

    Article  Google Scholar 

  35. S. Gallanti, E. Chassaing, D. Lincot, N. Naghavi, Influence of thiourea addition on the electrodeposition of ZnO from zinc nitrate aqueous solutions. Electrochim. Acta 178, 225–233 (2015)

    Article  Google Scholar 

  36. S.S. Lin, J.L. Huang, D.F. Lii, Effect of substrate temperature on the properties of Ti-doped ZnO films by simultaneous RF and DC magnetron sputtering. Mater. Chem. Phys. 90, 22–30 (2005)

    Article  Google Scholar 

  37. S.S. Kurbanov, H.C. Jeon, Z.Sh. Shaymardanov, R.Y. Rakhimov, T.W. Kang, Photoluminescence from porous textured ZnO films grown by chemical bath deposition. J. Lumin. 170, 168–173 (2016)

    Article  Google Scholar 

  38. M. Wang, J. Wang, W. Chen, Y. Cui, L.D. Wang, Effect of preheating and annealing temperatures on quality characteristics of ZnO thin film prepared by sol–gel method. Mater. Chem. Phys. 97, 219–225 (2006)

    Article  Google Scholar 

  39. S. Ghayempour, M. Montazer, M.M. Rad, Tragacanth gum biopolymer as reducing and stabilizing agent in biosonosynthesis of urchin-like ZnO nanorod arrays: a low cytotoxic photocatalyst with antibacterial and antifungal properties. Carbohydr. Polym. 136, 232–241 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jieyu Chen or Yongqian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Li, D., Yang, J. et al. Facile synthesis of urchin-like ZnO nanostructures with enhanced optical properties. J Mater Sci: Mater Electron 28, 1605–1611 (2017). https://doi.org/10.1007/s10854-016-5701-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5701-0

Keywords

Navigation