Log in

Facile bottom-up growth of pyramidally textured ZnO:Al films by combined chemical bathing and DC sputtering deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We developed a facile bottom-up approach to achieve the well-faceted pyramidally textured ZnO:Al (AZO) thin films on non-conductive glass substrates by combining chemical bathing and DC magnetron sputtering deposition. The chemical bathing deposition (CBD) was adopted to generate the ZnO nanorods (NRs) with a terminated plane of (001), followed by the further growth of (101)-faceted AZO pyramidal tips using DC sputtering. The structural, optical, and electrical properties of pyramidally textured AZO films were mainly governed by the size and distribution of ZnO NRs. When the length and the diameter of ZnO NRs were around 450 and 150 nm, respectively, controlled through the CBD process, the AZO film grown on the NRs showed a low resistivity of 9.7 × 10−4 Ω cm and a high average transmittance of 85.7 % at wavelengths of 400–1100 nm. The well-faceted pyramidal textures brought about a maximum haze value of 66.0 % at 355 nm and an average haze of 14.5 % at wavelengths of 355–1100 nm. This proposed simple strategy may benefit the studies on growth of pyramidally textured transparent conducting oxides on non-conductive substrates for high-efficient light harvesting through a low-cost and scalable process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Berginski, J. Hupkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, M. Wuttig, J. Appl. Phys. 101, 074903 (2007)

    Article  Google Scholar 

  2. R. Menner, D. Hariskos, V. Linss, M. Powalla, Thin Solid Films 519, 7541 (2011)

    Article  Google Scholar 

  3. H. Zhu, J. Hupkes, E. Bunte, J. Owen, S.M. Huang, Sol. Energy Mater. Sol. Cells 95, 964 (2011)

    Article  Google Scholar 

  4. K. Zhu, Y. Yang, T. Wei, R. Tan, P. Cui, W. Song, K.L. Choy, J. Mater. Sci. Mater. Electron. 24, 3844 (2013)

    Article  Google Scholar 

  5. M. Theuring, M. Vehse, K. von Maydell, C. Agert, Thin Solid Films 558, 294 (2014)

    Article  Google Scholar 

  6. P. Chen, G. Hu, Q.H. Wang, Appl. Phys. Lett. 105, 073506 (2014)

    Article  Google Scholar 

  7. V.A. Antohe, M. Mickan, F. Henry, R. Delamare, L. Gence, L. Piraux, Appl. Surf. Sci. 313, 607 (2014)

    Article  Google Scholar 

  8. A. Bai, Y. Tang, J. Chen, Chem. Phys. Lett. 636, 134 (2015)

    Article  Google Scholar 

  9. M. Wang, S. Li, P. Zhang, Y. Wang, H. Li, Z. Chen, Chem. Phys. Lett. 639, 283 (2015)

    Article  Google Scholar 

  10. P. Buehlmann, J. Bailat, D. Domine, A. Billet, F. Meillaud, A. Feltrin, C. Ballif, Appl. Phys. Lett. 91, 143505 (2007)

    Article  Google Scholar 

  11. D. Domine, P. Buehlmann, J. Bailat, A. Billet, A. Feltrin, C. Ballif, Phys. Status Solidi RRL 2, 163 (2008)

    Article  Google Scholar 

  12. S. Nicolay, M. Despeisse, F.J. Haug, C. Ballif, Sol. Energy Mater. Sol. Cells 95, 1031 (2011)

    Article  Google Scholar 

  13. J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, A. Shah, Thin Solid Films 451, 518 (2004)

    Article  Google Scholar 

  14. S. Fernandez, O. De Abril, F.B. Naranjo, J.J. Gandia, Thin Solid Films 520, 4144 (2012)

    Article  Google Scholar 

  15. M.L. Addonizio, L. Fusco, J. Alloy. Compd. 622, 851 (2015)

    Article  Google Scholar 

  16. S. Kim, J.W. Chung, H. Lee, J. Park, Y. Heo, H.M. Lee, Sol. Energy Mater. Sol. Cells 119, 26 (2013)

    Article  Google Scholar 

  17. Y. Wang, X. Zhang, L. Bai, Q. Huang, C. Wei, Y. Zhao, Appl. Phys. Lett. 100, 263508 (2012)

    Article  Google Scholar 

  18. S.J. Tark, M.G. Kang, S. Park, J.H. Jang, J.C. Lee, W.M. Kim, J.S. Lee, D. Kim, Curr. Appl. Phys. 9, 1318 (2009)

    Article  Google Scholar 

  19. S. Fernandez, O. De Abril, F.B. Naranjo, J.J. Gandia, Sol. Energy Mater. Sol. Cells 95, 2281 (2011)

    Article  Google Scholar 

  20. X. Yan, S. Venkataraj, A.G. Aberle, Int. J. Photoenergy 2015, 1 (2015)

    Article  Google Scholar 

  21. H. Zhu, J. Hupkes, E. Bunte, S.M. Huang, Appl. Surf. Sci. 261, 268 (2012)

    Article  Google Scholar 

  22. J.N. Ding, F. Ye, N.Y. Yuan, C.B. Tan, Y.Y. Zhu, G.Q. Ding, Z.H. Chen, Appl. Surf. Sci. 257, 1420 (2010)

    Article  Google Scholar 

  23. Z.L. Wang, Mat. Sci. Eng. R. 64, 33 (2009)

    Article  Google Scholar 

  24. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, 455 (2005)

    Article  Google Scholar 

  25. Y.H. Hu, Y.C. Chen, H.J. Xu et al., Engineering 02, 12 (2010)

    Article  Google Scholar 

  26. D. Wan, F. Huang, Y. Wang, A.C.S. Appl, Mater. Interfaces. 2, 2147 (2010)

    Article  Google Scholar 

  27. X. Zhou, Z.X. **e, Z.Y. Jiang, Q. Kuang, S.H. Zhang, T. Xu, R.B. Huang, L.S. Zheng, Chem. Commun. 44, 5572 (2005)

    Article  Google Scholar 

  28. Y.H. Liang, J.H. Huang, N.C. Chang, C.P. Liu, Cryst. Growth Des. 9, 2021 (2009)

    Article  Google Scholar 

  29. T. Shinagawa, K. Shibata, O. Shimomura, M. Chigane, R. Nomura, M. Izaki, J. Mater. Chem. C 2, 2908 (2014)

    Article  Google Scholar 

  30. N.J. Ridha, H. Jumali, M. Hafizuddin, A.A. Umar, F. Alosfur, Int. J. Electrochem. Sci. 8, 4583 (2013)

    Google Scholar 

  31. Y.L. Zhang, Y. Yang, J.H. Zhao, R.Q. Tan, P. Cui, W.J. Song, J. Sol-Gel. Sci. Technol. 51, 198 (2009)

    Article  Google Scholar 

  32. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Adv. Funct. Mater. 20, 561 (2010)

    Article  Google Scholar 

  33. M. Wang, Y. Yang, P. Lan, K. Zhu, Q. Huan, Y. Lu, R. Tan, W. Song, Phys. Status Solidi RRL 8, 172 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation of China (Nos. 21377063, 61275114) and K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiqin Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Tan, R., Yang, Y. et al. Facile bottom-up growth of pyramidally textured ZnO:Al films by combined chemical bathing and DC sputtering deposition. J Mater Sci: Mater Electron 27, 10764–10769 (2016). https://doi.org/10.1007/s10854-016-5180-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5180-3

Keywords

Navigation