Log in

Ultraviolet nano-photodetector based on ZnS:Cl nanoribbon/Au Schottky junctions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report on a semiconductor nanostructures/metal Schottky junction for optoelectronic device application. The n-type ZnS nanoribbons (NRs) with an electron mobility of 64.9 cm V−1 s−1 and electron concentration of 5.7 × 1017 cm−3 were synthesized by using Cl as dopant via a thermal co-evaporation method. Electrical analysis reveals that the Schottky barrier diodes (SBD) based on the ZnS:Cl NRs/Au junctions exhibited typical rectifying behavior (rectification ratio >103) with Schottky barrier height of .64 eV and a small ideality factor of ~1.05 at 320 K. Interestingly, n-ZnS:Cl NR/Au nano-SBD device exhibited pronounced negative photoresponse at forward bias, but positive photoresponse at reverse bias under 365 nm UV light irradiation. Finally, the detailed reason for this phenomenon was explained by the energy band diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.S. Jie, W.J. Zhang, I. Bello, C.S. Lee, S.T. Lee, One-dimensional II–VI nanostructures: synthesis, properties and optoelectronic applications. Nano Today 5, 313–336 (2010)

    Article  Google Scholar 

  2. S.K.J. Al-Ani, R.A. Ismail, H.F.A. Al-Ta’ay, Optoelectronic properties n: CdS:In/p-Si heterojunction photodetector. J. Mater. Sci. Mater. E117, 819–824 (2006)

    Article  Google Scholar 

  3. J.A. Zapien, Y. Jiang, X.M. Meng, W. Chen, F.C.K. Au, Y. Lifshitz, S.T. Lee, Room-temperature single nanoribbons lasers. Appl. Phys. Lett. 84, 1189–1191 (2004)

    Article  Google Scholar 

  4. L.B. Luo, X.L. Huang, M.Z. Wang, C. **e, C.Y. Wu, J.G. Hu, L. Wang, J.A. Huang, The effect of plasmonic nanoparticles on the optoelectronic characteristics of CdTe nanowires. Small 10, 2645–2652 (2014)

    Article  Google Scholar 

  5. X.S. Fang, Y. Bando, G.Z. Shen, C.H. Ye, U.K. Gautam, P.M.F.J. Costa, C.Y. Zhi, C.C. Tang, D. Golberg, Ultrafine ZnS nanobelts as field emitters. Adv. Mater. 19, 2593–2596 (2007)

    Article  Google Scholar 

  6. N. Hebalkar, A. Lobo, S.R. Sainkar, S.D. Pradhan, W. Vogel, J. Urban, S.K. Kulkarni, Properties of zinc sulphide nanoparticles stabilized in silica. J. Mater. Sci. 36, 4377–4384 (2001)

    Article  Google Scholar 

  7. G.Z. Shen, B. Liang, X.F. Wang, H.T. Huang, D. Chen, Z.L. Wang, Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications. ACS Nano 5, 6148–6155 (2011)

    Article  Google Scholar 

  8. B. Nie, L.B. Luo, J.J. Chen, J.G. Hu, C.Y. Wu, L. Wang, Y.Q. Yu, Z.F. Zhu, J.S. Jie, Fabrication of p-type nanowires for high-performance ultraviolet light photodetector application. Nanotechnology 24, 096503 (2013)

    Article  Google Scholar 

  9. A. Kato, M. Katayama, A. Mizutani, Y. Hattori, N. Ito, T. Hattori, Satellite peak generation in the electroluminescence spectrum of ZnS:Sm grown by metalorganic chemical vapor deposition with Clcodo**. J. Appl. Phys. 76, 3206–3208 (1994)

    Article  Google Scholar 

  10. E. Bacaksiz, O. Gorur, A. Tomakin, E. Yanmaz, A. Altunbas, Ag diffusion in ZnS thin films prepared by spray pyrolysis. Mater. Lett. 61, 5239–5242 (2007)

    Article  Google Scholar 

  11. L.D. Sun, C.H. Liu, C.S. Liao, C.H. Yan, ZnS nanoparticles doped with Cu(I) by controlling coordination and precipitation in aqueous solution. J. Mater. Chem. 9, 1655–1657 (1999)

    Article  Google Scholar 

  12. D.C. Perng, J.F. Fang, J.W. Chen, Nano-structured ZnSe/CIS heterojunctionsolar cells with ZnSe/ZnO coaxial nanowires. J Electro Chem 158, H1097–H1101 (2011)

    Article  Google Scholar 

  13. T. Yamamoto, S. Kishimoto, S. Iida, Control of valence states for ZnS by triple-codo** method. Phys. B 308–310, 916–919 (2001)

    Article  Google Scholar 

  14. J. Shah, A.E. DiGiovanni, Ac electroluminescence in thin-film ZnSe:Mn. Appl. Phys. Lett. 33, 995–996 (1978)

    Article  Google Scholar 

  15. L. Wang, M. Lu, X.A. Wang, Y.Q. Yu, X.Z. Zhao, P. Lv, H.W. Song, X.W. Zhang, L.B. Luo, C.Y. Wu, Y. Zhang, J.S. Jie, Tuning the p-type conductivity of ZnSe nanowires viasilver do** for rectifying and photovoltaic device applications. J. Mater. Chem. 1, 1148–1154 (2013)

    Article  Google Scholar 

  16. X.S. Fang, Y. Bando, M.Y. Liao, U.K. Gautam, C.Y. Zhi, B. Dierre, B.D. Liu, T.Y. Zhai, T. Sekiguchi, Y. Koide, Single-crystalline ZnS nanobelts as ultraviolet-light sensors. Adv. Mater. 21, 2034–2039 (2009)

    Article  Google Scholar 

  17. Y.Q. Yu, L.B. Luo, M.Z. Wang, B. Wang, L.H. Zeng, C.Y. Wu, J.S. Jie, J.W. Liu, L. Wang, S.H. Yu, Interfacial state induced ultrasensitive ultraviolet light photodetector with resolved flux down to 85 photons per second. Nano Res. (2015). doi:10.1007/s12274-014-0587-8

    Google Scholar 

  18. J.J. Hassan, M.A. Mahdi, S.J. Kasim, N.M. Ahmed, H.A. Hansan, Z. Hassan, High sensitivity and fast response and recovery times in a ZnO nanorod array/p-Si self-powered ultraviolet detector. Appl. Phys. Lett. 101, 261108-1–261108-3 (2012)

    Article  Google Scholar 

  19. D. Wu, Y. Jiang, Y.G. Zhuang, J.W. Li, Y.Q. Yu, Y.P. Zhang, Z.F. Zhu, L. Wang, C.Y. Wu, L.B. Luo, J.S. Jie, Device structure-dependent field-effect and photoresponse performances of p-type ZnTe:Sb nanoribbon. J. Mater. Chem. 22, 6206–6212 (2012)

    Article  Google Scholar 

  20. C.W. Liang, S. Roth, Electrical and optical transport of GaAs/Carbon nanotube heterojunctions. Nano Lett. 8, 1809–1812 (2008)

    Article  Google Scholar 

  21. T. Ghosh, M. Dutta, S. Mridha, D. Basak, Effect of Cu do** in the structural, electrical, optical, and optoelectronic properties of sol–gel ZnO thin films. J. Electrochem. Soc. 156, H285–H289 (2009)

    Article  Google Scholar 

  22. D. Wu, Y. Jiang, Y.G. Zhang, Y.Q. Yu, Z.F. Zhu, X.Z. Lan, F.Z. Li, C.Y. Wu, L. Wang, L.B. Luo, Self-powered and fast-speed photodetector based on CdS: Ga nanoribbons/Au Schottky diode. J. Mater. Chem. 22, 23272–23276 (2012)

    Article  Google Scholar 

  23. H. Luo, J.K. Furdyna, The II–VI semiconductor blue–green laser: challenges and solutions. Semicond. Sci. Technol. 10, 1041 (1995)

    Article  Google Scholar 

  24. Y.Q. Yu, J.S. Jie, P. Jiang, L. Wang, C.Y. Wu, Q. Peng, X.W. Zhang, Z. Wang, C. **e, D. Wu, Y. Jiang, High-gain visible-blind UV photodetectors based on chlorine-doped n-type ZnS nanoribbons with tunable optoelectronic properties. J. Mater. Chem. 21, 12632–12638 (2011)

    Article  Google Scholar 

  25. M.Z. Wang, W.J. ** and optoelectronic properties. Appl. Phys. Lett. 103, 213111-1–213111-4 (2013)

    Google Scholar 

  26. N. Karar, F. Singh, B.R. Mehta, Structure and photoluminescence studies on ZnS:Mn nanoparticles. J. Appl. Phys. 95, 656–660 (2004)

    Article  Google Scholar 

  27. L.B. Luo, X.B. Yang, F.X. Liang, J.S. Jie, Q. Li, Z.F. Zhu, C.Y. Wu, Y.Q. Yu, L. Wang, Transparent and flexible selenium nanobelt-based visible light photodetector. CrystEngComm 14, 1942–1947 (2012)

    Article  Google Scholar 

  28. Y.Q. Yu, L.B. Luo, Z.F. Zhu, B. Nie, Y.G. Zhang, L.H. Zeng, Y. Zhang, C.Y. Wu, L. Wang, Y. Jiang, High-speed ultraviolet-visible-near infrared photodiodes based on p-ZnS nanoribbon-n-silicon heterojunction. CrystEngComm 15, 1635–1642 (2013)

    Article  Google Scholar 

  29. S.M. Sze, K.K. Ng, J. Wiley, S. Hoboken, Physics of semiconductor devices, 3rd edn. (John Wiley & Sons, NJ, 2007)

  30. L.H. Zeng, M.Z. Wang, H. Hu, B. Nie, Y.Q. Yu, C.Y. Wu, L. Wang, J.G. Hu, C. **e, F.X. Liang, L.B. Luo, Germanium/graphene Schottky photodiode. ACS Appl. Mater. Interfaces 5, 362–9366 (2013)

    Google Scholar 

  31. X. Miao, S. Tongay, M.K. Petterson, K. Berke, A.G. Rinzler, B.R. Appleton, A.F. Hebard, High efficiency graphene solar cells by chemical do**. Nano Lett. 12, 2745–2750 (2012)

    Article  Google Scholar 

  32. L.B. Luo, J.J. Chen, M.Z. Wang, H. Hu, C.Y. Wu, Q. Li, L. Wang, J.A. Huang, F.X. Liang, Near infrared light photovoltaic detector based on GaAs nanocones array/monolayer graphene Schottky junction. Adv. Funct. Mater. 24, 2794–2800 (2014)

    Article  Google Scholar 

  33. R. Sharma, A spray drying system for synthesis of rare-earth doped cerium oxide nanoparticles. J. Electron. Dev. 495, 280–286 (2010)

    Google Scholar 

  34. W.F. **, Y. Ye, L. Gan, B. Yu, P.C. Wu, Y. Wu, H. Meng, X.F. Guo, L. Dai, Self-powered high performance photodectors based on CdSenanoblet/graphene Schottky junctions. J. Mater. Chem. 22, 2863–2867 (2012)

    Article  Google Scholar 

  35. B. Nie, L.B. Luo, C. **e, P. Lv, J.S. Jie, M. Feng, F.Z. Li, C.Y. Wu, L. Wang, Y.Q. Yu, S.H. Yu, Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors. Small 9, 2872–2879 (2013)

    Article  Google Scholar 

  36. D.S. Tsai, C.A. Lin, W.C. Lien, H.C. Chang, Y.L. Wang, J.H. He, Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays. ACS Nano 5, 7748–7753 (2011)

    Article  Google Scholar 

  37. D.C. Kim, B.O. Jung, J.H. Lee, H.K. Cho, J.Y. Lee, J.H. Lee, Dramatically enhanced ultraviolet photosensing mechanism in a n-ZnO nanowires/i-MgO/n-Si structure with highly densenanowires and ultrathin MgO layers. Nanotechnology 22, 265506–265514 (2011)

    Article  Google Scholar 

  38. D.B. Li, X.J. Sun, H. Song, Z.M. Li, Y.R. Chen, H. Jiang, G.Q. Miao, Realization of a high-performance GaN UV detector by nanoplasmonic enhancement. Adv. Mater. 24, 845–849 (2012)

    Article  Google Scholar 

  39. T.V. Cuong, H.N. Tien, V.H. Luan, V.H. Pham, J.S. Chung, D.H. Yoo, S.H. Hahn, K.K. Koo, P.A. Kohl, S.H. Hur, E.J. Kim, Solution-processed semitransparent p-n graphene oxide:CNT/ZnO heterojunction diodes for visible-blind UV sensors. Phys. Status Solidi A 208, 943–946 (2011)

    Article  Google Scholar 

  40. X.W. Zhang, J.S. Jie, Z. Wang, C.Y. Wu, L. Wang, Q. Peng, Y.Q. Yu, P. Jiang, C. **e, Surface induced negative photoconductivity in p-type ZnSe: Bi nanowires and its nano-optoelectronic applications. J. Mater. Chem. 21, 6736–6741 (2011)

    Article  Google Scholar 

  41. S. Panigrahi, A. Bera, D. Basak, Encapsulation of 2-3-nm-sized ZnO quantum dots in a SiO2 matrix and observation of negative photoconductivity. ACS Appl. Mater. Interfaces 1, 2408–2411 (2009)

    Article  Google Scholar 

  42. S.Y. Wang, W.L. Liu, M. Zhang, Negative photoconductivity and memory effects of germanium nanocrystals embedded in HfO2 dielectric. J. Nanosci. Nanotechnol. 6, 205–208 (2006)

    Google Scholar 

  43. C.Y. Liu, K. Liang, C.C. Chang, Effects of plasmonic coupling and electrical current on persistent photoconductivity of single-layer graphene on pristine and silver nanoparticle coated SiO2/Si. Opt. Exp. 20, 22943–22952 (2012)

    Article  Google Scholar 

  44. Q. Peng, J.S. Jie, C. **e, L. Wang, X.W. Zhang, D. Wu, Y.Q. Yu, C.Y. Wu, Z. Wang, P. Jiang, Nano-Schottky barrier diodes based on Sb-doped ZnS nanoribbonswith controlled p-type conductivity. Appl. Phys. Lett. 98, 123117-1–123117-3 (2011)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the financial supports from the China Scholarship Council, the Natural Science Foundation of China (Nos. 61106010, 21101051), the Natural Science Foundation of Anhui Province (J2014AKZR0059), and the Fundamental Research Funds for the Central Universities (Nos. 2013HGXJ0195, 2012HGCX0003, 2013HGCH0012, 2014HGCH0005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Wang, Yong-Qiang Yu or Lin-Bao Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Ma, X., Chen, R. et al. Ultraviolet nano-photodetector based on ZnS:Cl nanoribbon/Au Schottky junctions. J Mater Sci: Mater Electron 26, 4290–4297 (2015). https://doi.org/10.1007/s10854-015-2981-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2981-8

Keywords

Navigation