Log in

Bandgap variation in grain size controlled nanostructured CdO thin films deposited by pulsed-laser method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cadmium oxide (CdO) thin films were prepared by pulsed laser deposition technique. Their structure, surface morphology, optical and electrical properties have been investigated. With a decrease in the laser energy density, the average grain size of the CdO film can be adjusted from 108 to 25 nm. High-resolution TEM observation showed that more crystalline defects like lattice distortion, dislocation and amorphous structure existed in the small grained (25 nm) CdO film, and X-ray photoelectron spectroscopy analysis confirmed that the film had more oxygen vacancies. The electrical and optical properties of the films significantly depended on the grain size. With the grain size decreasing to 25 nm, the optical band gap energy of the CdO film increased obviously from 2.82 to 3.33 eV. This change in the nature of material from semimetal to a wide band gap semiconductor, combining with its higher optical transmission (92 %) in visible light region, higher carrier concentration (1.25 × 1021 cm−3) and lower electrical resistivity (2.8 × 10−4 cm−3), makes the nano-grained CdO film very useful in optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Guo, J. Zhou, Z. Lin, Electrochem. Commun. 10, 146–150 (2008)

    Article  Google Scholar 

  2. S. Aksoy, Y. Caglar, S. Ilican, M. Caglar, Int. J. Hydrogen Energy 34, 5191–5195 (2009)

    Article  Google Scholar 

  3. Z. Zhao, D.L. Morel, C.S. Ferekides, Thin Solid Films 413, 203–211 (2002)

    Article  Google Scholar 

  4. I. Akyuz, S. Kose, E. Ketenci, V. Bilgin, F. Atay, J. Alloys Compd. 509, 1947–1952 (2011)

    Article  Google Scholar 

  5. J.T. Lim, C.H. Jeong, A. Vozny, J.H. Lee, M.S. Kim, Surf. Coat. Technol. 201, 5358–5362 (2007)

    Article  Google Scholar 

  6. S. **, Y. Yang, M.C. Hersam, J. Freeman, T.J. Marks, Chem. Mater. 20, 220–230 (2008)

    Article  Google Scholar 

  7. C.H. Bhosale, A.V. Kambale, A.V. Kokate, K.Y. Rajpure, Mater. Sci. Eng. B. 122, 67–71 (2005)

    Article  Google Scholar 

  8. S.K. Vasheghani Farahani, T.D. Veal, J. Zúñiga-Pérez, C.F. McConville, J. Appl. Phys. 109, 073712-07372-5 (2011)

    Google Scholar 

  9. J. Santos-Cruz, G. Torres-Delgado, R. Castanedo-Perez, S. Jimenez-Sandoval, Thin Solid Films 493, 83–87 (2005)

    Article  Google Scholar 

  10. R.K. Gupta, K. Ghosh, P. Patel, P.K. Kaho, Appl. Surf. Sci. 255, 6252–6255 (2009)

    Article  Google Scholar 

  11. F. Yakuphanoğlu, J. Alloys Compd. 507, 184–189 (2010)

    Article  Google Scholar 

  12. R. Kumaravel, K. Ramamurthi, V. Krishnakumar, J. Phys. Chem. Solids 71, 1545–1549 (2010)

    Article  Google Scholar 

  13. Raid A. Ismail, J. Mater. Sci. Mater. Electron. 20, 1219–1224 (2009)

    Article  Google Scholar 

  14. M. Ocampo, P.J. Sebastian, J. Campos, Phys. Status Solidi A 143, K29–K32 (1994)

    Article  Google Scholar 

  15. R. Zhang, P. Chen, D. Yang, J. Cryst. Growth 312, 1908–1911 (2010)

    Article  Google Scholar 

  16. P. Mohan Babu, G. Venkata Rao, S. Uthanna, J. Mater. Sci. Mater. Electron. 15, 389–394 (2004)

    Article  Google Scholar 

  17. H. Khallaf, C.-T. Chen, L.-B. Chang, L. Chow, Appl. Surf. Sci. 257, 9237–9242 (2011)

    Article  Google Scholar 

  18. D.M. Ellis, S.J.C. Irvine, J. Mater. Sci. Mater. Electron. 15, 369–372 (2004)

    Article  Google Scholar 

  19. S.A. Mayén-Hernández, J. Santos-Cruz, G. Torres-Delgadoa, O. Zelaya-Angel, Surf. Coat. Technol. 200, 3567–3572 (2006)

    Article  Google Scholar 

  20. N. Kavasoglu, A. Sertap Kavasoglu, S. Oktik, J. Phys. Chem. Solids 70, 521–526 (2009)

    Article  Google Scholar 

  21. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice-Hall Inc., New Jersey, 2001), pp. 167–171

    Google Scholar 

  22. D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, New York, 1990), p. 153

    Google Scholar 

  23. K.R. Murali, A. Kalaivanan, S. Perumal, N. Neelakanda Pillai, J. Alloys Compd. 503, 350–353 (2010)

    Article  Google Scholar 

  24. B. Saha, R. Thapa, K.K. Chattopadhyay, Solid State Commun. 145, 33–37 (2008)

    Article  Google Scholar 

  25. Y. Dou, R.G. Egdell, T. Walker, D.S.L. Law, G. Beamson, Surf. Sci. 398, 241–258 (1998)

    Article  Google Scholar 

  26. S. Major, S. Kumar, M. Bhatnagar, K.L. Chopra, Appl. Phys. Lett. 40, 394–396 (1986)

    Article  Google Scholar 

  27. M.N. Islam, T.B. Ghosh, K.L. Chopra, H.N. Acharya, Thin Solid Films 280, 20–25 (1996)

    Article  Google Scholar 

  28. M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, Appl. Surf. Sci. 158, 134–140 (2000)

    Article  Google Scholar 

  29. C.D. Wagner, Handbook of X-Ray Photoelectron Spectroscopy, 2nd edn. (Perkin Elmer Corporation, Eden Praine, Minnesota, 1979), p. 54

    Google Scholar 

  30. M. Burbano, D.O. Scanlon, G.W. Watson, J. Am. Chem. Soc. 133, 15065–15072 (2011)

    Article  Google Scholar 

  31. L.F.J. Piper, L. Colakerol, P.D.C. King, K.E. Smith, Phys. Rev. B. 78, 165127–165131 (2008)

    Article  Google Scholar 

  32. W. Walukiewicz, J.W. Ager III, K.M. Yu, J.D. Denlinger, J. Phys. D. 39, R83–R99 (2006)

    Article  Google Scholar 

  33. J.B. Varley, A. Janotti, C.G. Van de Walle, Appl. Phys. Lett. 97, 142106-1–142106-3 (2010)

  34. H.S. San, B. Li, B.X. Feng, Y.Y. He, C. Chen, Thin Solid Films 483, 245–250 (2004)

    Article  Google Scholar 

  35. H. Ryu, J. Kang, Y. Han, J. Electron. Mater. 23, 919–924 (2003)

    Article  Google Scholar 

  36. A.V. Moholkar, G.L. Agawanec, K.-U. Sima, J.H. Kima, Appl. Surf. Sci. 257, 93–101 (2010)

    Article  Google Scholar 

  37. B. Thangaraju, Thin Films Solids 402, 71–78 (2002)

    Article  Google Scholar 

  38. M.K.R. Khan, M. Azizar, M. Azizar Rahman, M. Shahjahan, Curr. Appl. Phys. 10, 790–796 (2010)

    Article  Google Scholar 

  39. A.W. Metz, J.R. Ireland, K.R. Zheng, T.J. Marks, J. Am. Chem. Soc. 126, 8477–8492 (2004)

    Article  Google Scholar 

  40. R.B.H. Tahar, N.B.H. Tahar, J. Appl. Phys. 92, 4498–4501 (2002)

    Article  Google Scholar 

  41. R. Ferro, J.A. Rodriguez, O. Vigil, A.M. Acevedo, Mater. Sci. Eng. B 87, 83–86 (2001)

    Article  Google Scholar 

  42. J.I. Pankove, Optical Processes in Semiconductors, 2nd edn. (Dover, New York, 1975), p. 92

    Google Scholar 

  43. B.E. Sernelius, K.F. Berggren, Z.C. **, I. Hamberg, C.G. Granqvist, Phys. Rev. B. 37, 10244–10248 (1988)

    Article  Google Scholar 

  44. M. Bugajski, W. Lewandowski, J. Appl. Phys. 57, 521–530 (1985)

    Article  Google Scholar 

  45. J. Camassel, D. Auvergne, H. Mathieu, J. Appl. Phys. 46, 2683–2689 (1975)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Foundation of National Key Basic Research and Development Program (No. 2010CB631001), the National Nature Science Foundation (Grant No. 31070841) and the Program for Changjiang Scholars and Innovative Research Team in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Lian.

About this article

Cite this article

Pan, L.L., Li, G.Y., **ao, S.S. et al. Bandgap variation in grain size controlled nanostructured CdO thin films deposited by pulsed-laser method. J Mater Sci: Mater Electron 25, 1003–1012 (2014). https://doi.org/10.1007/s10854-013-1678-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1678-0

Keywords

Navigation