Log in

Mn–Cu composite oxides derived from MOFs for the efficient and selective oxidation of alkenes to carbonyls under mild conditions

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The selective oxidation of alkenes to carbonyls is one of fundamental processes in organic synthesis. The MOFs precursor was obtained by impregnating Cu-BTC MOFs with the manganese chloride solution, and then, Mn–Cu composite oxides were obtained by pyrolysis at 400 °C. The Mn–Cu composite oxides as a heterogeneous catalyst show outstanding catalytic performance on the selective oxidation of aryl alkenes to carbonyls, utilizing oxygen as an environmentally friendly oxidant at room temperature. Under optimized reaction conditions, this catalytic system exhibited a broad scope of substrates and the maximum yield of the products was obtained up to 99%. The catalyst was characterized with various techniques (SEM, HRTEM, BET, XRD, IR, XPS, and ICP-OES). The results demonstrate that Mn–Cu catalyst exhibits a well-defined octahedral morphology and possesses abundant oxygen vacancies. Detailed mechanism experiments indicate that reactive oxygen species (ROS) are involved in this transformation, wherein the superoxide radical (O2·−) and singlet oxygen (1O2) may be the crucially active oxidants. In addition, the reaction mechanism of aerobic cracking of alkenes was reasonably proposed, and the catalyst could be recycled at least six cycles without significant decrease in catalytic activity. Based on catalyst characterization and mechanism experiments, the synergistic effect between Mn and Cu oxides in Mn–Cu composite oxides and the abundant oxygen vacancies on the surface of the catalyst could play a vital role in the selective oxidation of aryl alkenes to carbonyls.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Yu W, Zhao Z (2019) Catalyst-free selective oxidation of diverse olefins to carbonyls in high yield enabled by light under mild conditions. Org Lett 21:7726–7730. https://doi.org/10.1021/acs.orglett.9b02569

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Y, Yue X, Liang C, Zhao J, Yu W, Zhang P (2021) Photo-induced oxidative cleavage of C–C double bonds of olefins in water. Tetrahedron Lett 80:153321. https://doi.org/10.1016/j.tetlet.2021.153321

    Article  CAS  Google Scholar 

  3. Fan S, Dong W, Huang X, Gao H, Wang J, ** Z, Tang J, Wang G (2017) In situ-induced synthesis of magnetic Cu–CuFe2O4@HKUST-1 heterostructures with enhanced catalytic performance for selective aerobic benzylic C–H oxidation. ACS Catal 7:243–249. https://doi.org/10.1021/acscatal.6b02614

    Article  CAS  Google Scholar 

  4. Mi C, Li L, Meng XG, Yang RQ, Liao XH (2016) Highly selective oxidation of unsaturated hydrocarbons to carbonyl compounds by two-phase catalysis. Tetrahedron 72:6705–6710. https://doi.org/10.1016/j.tet.2016.09.003

    Article  CAS  Google Scholar 

  5. Firoozi S, Hosseini-Sarvari M (2020) Photo-difunctionalization and photo-oxidative cleavage of the C–C double bond of styrenes in the presence of nanosized cadmium sulfide (CdS) as a highly efficient photo-induced reusable nanocatalyst. Eur J Org Chem 2020:3834–3843. https://doi.org/10.1002/ejoc.202000448

    Article  CAS  Google Scholar 

  6. Hossain MM, Huang WK, Chen HJ, Wang PH, Shyu SG (2014) Efficient and selective copper-catalyzed organic solvent-free and biphasic oxidation of aromatic gem-disubstituted alkenes to carbonyl compounds by tert-butyl hydroperoxide at room temperature. Green Chem 16:3013–3017. https://doi.org/10.1039/C3GC42624F

    Article  CAS  Google Scholar 

  7. Ou J, He S, Wang W, Tan H, Liu K (2021) Highly efficient oxidative cleavage of olefins with O2 under catalyst-, initiator- and additive-free conditions. Org Chem Front 8:3102–3109. https://doi.org/10.1039/D1QO00175B

    Article  CAS  Google Scholar 

  8. Jia LF, Li HZ, Li ZH, Li RJ, Yang GY (2021) Aerobic oxidative cleavage of C=C bond to carbonyl compound. Results Chem 3:100137. https://doi.org/10.1016/j.rechem.2021.100137

    Article  CAS  Google Scholar 

  9. Maurya A, Kesharwani N, Kachhap P, Mishra VK, Chaudhary N, Haldar C (2019) Polymer-anchored mononuclear and binuclear CuII Schiff-base complexes: Impact of heterogenization on liquid phase catalytic oxidation of a series of alkenes. Appl Organomet Chem 33:e5094. https://doi.org/10.1002/aoc.5094

    Article  CAS  Google Scholar 

  10. Michele AD, Giovagnoli S, Filipponi P, Venturoni F, Gioiello A (2021) SBA15-supported nano-ruthenium catalyst for the oxidative cleavage of alkenes to aldehydes under flow conditions. Tetrahedron Lett 86:153509. https://doi.org/10.1016/j.tetlet.2021.153509

    Article  CAS  Google Scholar 

  11. Muthumari S, Ramesh R (2018) Synthesis and structure of Ru(II) complexes of thiosemicarbazone: highly selective catalysts for oxidative scission of olefins to aldehydes. ChemistrySelect 3:3036–3041. https://doi.org/10.1002/slct.201800163

    Article  CAS  Google Scholar 

  12. Ruffoni A, Hampton C, Simonetti M, Leonori D (2022) Photoexcited nitroarenes for the oxidative cleavage of alkenes. Nature 610:81–86. https://doi.org/10.1038/s41586-022-05211-0

    Article  CAS  PubMed  Google Scholar 

  13. Guang B, Zhang Y, **ao Y, Su M, Li X, Liu Y (2022) Fe3C confined in N-doped carbons derived from Fe-N bearing ionic liquids for selective oxidation of styrene into benzaldehyde with molecular oxygen. J Taiwan Inst Chem E 135:104368. https://doi.org/10.1016/j.jtice.2022.104368

    Article  CAS  Google Scholar 

  14. Guo C, Zhang Y, Zhang L, Guo Y, Akram N, Wang J (2018) 2-Methylimidazole-assisted synthesis of nanosized Cu3(BTC)2 for controlling the selectivity of the catalytic oxidation of styrene. ACS Appl Nano Mater 1:5289–5296. https://doi.org/10.1021/acsanm.8b01283

    Article  CAS  Google Scholar 

  15. Guang B, Pu W, Zhang Y, Zhang W, **ao Y, Liu Y (2023) Highly selective oxidation of styrene into benzaldehyde over nano CeWOx composite confined in N-doped carbon under solvent-free conditions. Mol Catal 547:113316. https://doi.org/10.1016/j.mcat.2023.113316

    Article  CAS  Google Scholar 

  16. Chang Y, **e Y, Zhao C, Ren J, Su W, Zhao W, Wu L, Yu H (2022) Selective oxidation of olefins to aldehydes/ ketones/ carboxylic acids with an efficient and practical polyoxometalate-based iron catalyst. ChemCatChem 14:e202200209. https://doi.org/10.1002/cctc.202200209

    Article  CAS  Google Scholar 

  17. Chen YX, He JT, Wu MC, Liu ZL, Tang K, **a PJ et al (2022) Photochemical organocatalytic aerobic cleavage of C=C bonds enabled by charge-transfer complex formation. Org Lett 24:3920–3925. https://doi.org/10.1021/acs.orglett.2c01192

    Article  CAS  PubMed  Google Scholar 

  18. Fan Q, Zhang H, Liu D, Yan C, Zhu H, **e Z, Le Z (2023) Visible-light photocatalytic aerobic C=C bond cleavage of alkenes to carbonyls by CsPbBr3 nanocrystals. J Org Chem 88:7391–7400. https://doi.org/10.1021/acs.joc.3c00653

    Article  CAS  PubMed  Google Scholar 

  19. Chen D, Cheng Y, Zhou N, Chen P, Wang Y, Li K et al (2020) Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review. J Clean Prod 268:121725. https://doi.org/10.1016/j.jclepro.2020.121725

    Article  CAS  Google Scholar 

  20. Chen P, Zhang P, Cui Y, Fu X, Wang Y (2023) Recent progress in copper-based inorganic nanostructure photocatalysts: properties, synthesis and photocatalysis applications. Mater Today Sustain 21:100276. https://doi.org/10.1016/j.mtsust.2022.100276

    Article  Google Scholar 

  21. Kumar S, Jain S, Nehra M, Dilbaghi N, Marrazza G, Kim KH (2020) Green synthesis of metal-organic frameworks: A state-of-the-art review of potential environmental and medical applications. Coord Chem Rev 420:213407. https://doi.org/10.1016/j.ccr.2020.213407

    Article  CAS  Google Scholar 

  22. Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y et al (2022) MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 51:1045–1097. https://doi.org/10.1039/D1CS00968K

    Article  CAS  PubMed  Google Scholar 

  23. Zou KY, Li ZX (2018) Controllable syntheses of MOF-derived materials. Chem Eur J 24:6506–6518. https://doi.org/10.1002/chem.201705415

    Article  CAS  PubMed  Google Scholar 

  24. Villenoisy TD, Zheng X, Wong V, Mofarah SS, Arandiyan H, Yamauchi Y, Koshy P, Sorrell CC (2023) Principles of design and synthesis of metal derivatives from MOFs. Adv Mater 35:2210166. https://doi.org/10.1002/adma.202210166

    Article  CAS  Google Scholar 

  25. Jiang Y, Gao J, Zhang Q, Liu Z, Fu M, Wu J, Hu Y, Ye D (2019) Enhanced oxygen vacancies to improve ethyl acetate oxidation over MnOx-CeO2 catalyst derived from MOF template. Chem Eng J 371:78–87. https://doi.org/10.1016/j.cej.2019.03.233

    Article  CAS  Google Scholar 

  26. Yu X, ** T, Wang H, Zhang G, Jia W, Peng L et al (2023) Heterogeneously-catalyzed aerobic oxidation of furfural to furancarboxylic acid with CuO-promoted MnO2. Green Energy Environ 8:1683–1692. https://doi.org/10.1016/j.gee.2022.03.016

    Article  CAS  Google Scholar 

  27. Xu Y, Qu Z, Ren Y, Dong C (2021) Enhancement of toluene oxidation performance over Cu–Mn composite oxides by regulating oxygen vacancy. Appl Surf Sci 560:149983. https://doi.org/10.1016/j.apsusc.2021.149983

    Article  CAS  Google Scholar 

  28. **ong S, Huang N, Peng Y, Chen J, Li J (2021) Balance of activation and ring-breaking for toluene oxidation over CuO-MnOx bimetallic oxides. J Hazard Mater 415:125637. https://doi.org/10.1016/j.jhazmat.2021.125637

    Article  CAS  PubMed  Google Scholar 

  29. Huang D, Zheng J, Yang Q, Yang D, Sun H, Chen G, Gao D, Zhao H (2023) RuO2 supported on MOF-derived CeO2 as an efficient catalyst for selective C-H oxidation of alkylarenes in water at room temperature. Micropor Mesopor Mater 354:112548. https://doi.org/10.1016/j.micromeso.2023.112548

    Article  CAS  Google Scholar 

  30. Huang D, Sun H, Li J, Xu H, Zhao H (2023) A Co-Ni-CM heterogeneous catalyst for the direct synthesis of amides from the oxidative coupling of aldehydes with N-substituted formamides. ChemCatChem 15:e202300715. https://doi.org/10.1002/cctc.202300715

    Article  CAS  Google Scholar 

  31. Sun H, Han X, Liu K, Shen B, Liu J, Wu D, Shi X (2017) Metal-modified Cu-BTC acid for highly enhanced adsorption of organosulfur species. Ind Eng Chem Res 56:9541–9550. https://doi.org/10.1021/acs.iecr.7b02392

    Article  CAS  Google Scholar 

  32. Zhou Y, Liu J, Long J (2021) Photocatalytic oxidation 5-Hydroxymethylfurfural to 2, 5-diformylfuran under air condition over porous TiO2@MOF. J Solid State Chem 303:122510. https://doi.org/10.1016/j.jssc.2021.122510

    Article  CAS  Google Scholar 

  33. Sieben JM, Alvarez AE, Sanchez MD (2023) Glycerol electrooxidation on carbon-supported Pt-CuO and PtCu-CuO catalysts. Electrochim Acta 439:141672. https://doi.org/10.1016/j.electacta.2022.141672

    Article  CAS  Google Scholar 

  34. Nayak A, Viegas S, Dasari H, Sundarabal N (2022) Cu-BDC and Cu2O derived from Cu-BDC for the removal and oxidation of asphaltenes: a comparative study. ACS Omega 7:34966–34973. https://doi.org/10.1021/acsomega.2c03574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen Y, Liu H, Hu X, Cheng B, Liu D, Zhang Y, Nair S (2017) PVDF/Cu-BTC composite membranes for dye separation. Fibers Polym 18:1250–1254. https://doi.org/10.1007/s12221-017-6814-7

    Article  CAS  Google Scholar 

  36. Wang Y, Bi F, Wang Y, Jia M, Tao X, ** Y, Zhang X (2021) MOF-derived CeO2 supported Ag catalysts for toluene oxidation: The effect of synthesis method. Mol Catal 515:111922. https://doi.org/10.1016/j.mcat.2021.111922

    Article  CAS  Google Scholar 

  37. Chen Y, Li J, Teng W, Liu W, Ren S, Yang J, Liu Q (2023) Revealing the crystal-plane effects of CuO during the NH3-SCR over CuO/TiO2 catalysts. J Environ Chem Eng 11:110787. https://doi.org/10.1016/j.jece.2023.110787

    Article  CAS  Google Scholar 

  38. Sarıcı-Özdemir Ç, Önal Y (2010) Study to investigate the importance of mass transfer of naproxen sodium onto activated carbon. Chem Eng Process Process Intensif 49:1058–1065. https://doi.org/10.1016/j.cep.2010.08.011

    Article  CAS  Google Scholar 

  39. Zhang X, Liu M, Han R (2021) Adsorption of phosphate on UiO-66-NH2 prepared by a green synthesis method. J Environ Chem Eng 9:106672. https://doi.org/10.1016/j.jece.2021.106672

    Article  CAS  Google Scholar 

  40. Zhang M, Hu D, Xu Z, Liu B, Boubeche M, Chen Z et al (2021) Facile synthesis of Ni-, Co-, Cu-metal organic frameworks electrocatalyst boosting for hydrogen evolution reaction. J Mater Sci Technol 72:172–179. https://doi.org/10.1016/j.jmst.2020.09.028

    Article  CAS  Google Scholar 

  41. Wang J, Zhang C, Wang Y, Chen W, Li Z, Feng Y (2021) The effect of synthesis methods on active oxygen species of MnOx-CuO in soot combustion. Catal Lett 151:3261–3272. https://doi.org/10.1007/s10562-021-03558-z

    Article  CAS  Google Scholar 

  42. **ong W, Qin Q, Chu B, Wang R, Li H, Fan M, Li B, Dong L (2023) Simultaneous regulation for phase transition of titanium dioxide and valence distribution of copper species on MnCuOx/TiSnOx. Mol Catal 544:113159. https://doi.org/10.1016/j.mcat.2023.113159

    Article  CAS  Google Scholar 

  43. Li H, Ma W, Zeng X, Liu S, **ao L, Fang Z et al (2023) ZnO/CuO piezoelectric nanocatalysts for the degradation of organic pollutants. ACS Appl Nano Mater 6:21113–21122. https://doi.org/10.1021/acsanm.3c04168

    Article  CAS  Google Scholar 

  44. Fu Y, Liu L, Tricard S, Liang K, Zhang J, Fang J, Zhao J (2023) Slow pyrolysis of Cu/Co-Co Prussian blue analog to enhance catalytic activity and selectivity in epoxidation of styrene. Appl Catal A Gen 657:119161. https://doi.org/10.1016/j.apcata.2023.119161

    Article  CAS  Google Scholar 

  45. Cui M, Dong L, Shen Z, Guo T, Zhao W, Liang C et al (2023) Preparation of porous carbon supported Co element do** spinel copper ferrite for the catalytic oxidation of vanillyl alcohol. Appl Catal A Gen 664:119325. https://doi.org/10.1016/j.apcata.2023.119325

    Article  CAS  Google Scholar 

  46. Li F, Tang J, Ke Q, Guo Y, Ha MN, Wan C et al (2021) Investigation into enhanced catalytic performance for epoxidation of styrene over LaSrCoxFe2-xO6 double perovskites: The role of singlet oxygen species promoted by the photothermal effect. ACS Catal 11:11855–11866. https://doi.org/10.1021/acscatal.1c03164

    Article  CAS  Google Scholar 

  47. Dissanayake S, Vora N, Achola L, Dang Y, He J, Tobin Z et al (2021) Synergistic catalysis by Mn promoted ceria for molecular oxygen assisted epoxidation. Appl Catal B Environ Energy 282:119573. https://doi.org/10.1016/j.apcatb.2020.119573

    Article  CAS  Google Scholar 

  48. Ju ZY, Song LN, Chong MB, Cheng DG, Hou Y, Zhang XM, Zhang QH, Ren LH (2022) Selective aerobic oxidation of Csp3-H bonds catalyzed by yeast-derived nitrogen, phosphorus, and oxygen codoped carbon materials. J Org Chem 87:3978–3988. https://doi.org/10.1021/acs.joc.1c02641

    Article  CAS  PubMed  Google Scholar 

  49. Liu L, Tricard S, Peng X, Chen Y, Liu H, Wang G, Fang J, Zhao J (2022) Tuning the electronic structure and hydrophilicity of Prussian-blue type catalysts by incorporation of alklypyrazinium bromides, for enhanced activity. Appl Catal A Gen 647:118889. https://doi.org/10.1016/j.apcata.2022.118889

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shandong Provincial Natural Science Foundation, China (ZR2020MB006 and ZR2016JL009) and the University of **an.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiqing Zhao.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1672 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Wang, C., Wang, Z. et al. Mn–Cu composite oxides derived from MOFs for the efficient and selective oxidation of alkenes to carbonyls under mild conditions. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09974-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09974-x

Navigation