Log in

Solute diffusion in polycrystals with migrating grain boundaries: phase-field approach

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we develop the phase-field model of anisotropic diffusion of solute in polycrystals with migrating grain boundaries (GBs), taking into account the interaction between the solution components in regular solution approximation. The analysis demonstrates that as the velocity of a flat isolated GB increases, there is a corresponding reduction in the depth of solute penetration and an increase in the overall solute quantity. When the migration of the GB is driven by grain growth mechanisms, the total solute content may either increase, decrease, or display non-monotonic changes, contingent upon the dynamics governing the evolution of the GB extent, which might reduce due to microstructural coarsening. If the kinetic regimes B or C are realized, the relations for calculation of the GB diffusion coefficients derived within the GB diffusion theory can be modified taking into account the interatomic interaction. In the direct numerical simulation, we demonstrate that these modified relations can be used for the estimation of the effective GB mobility for relatively slow motion of GBs. It is shown that fast GB migration causes the underestimation of the GB solute mobility. The highest deviation is observed for C-type kinetics, where the ratio of the effective mobility of solute at stationary and migrating GBs reaches the value of ~ 4.8.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available within the article and its supplementary material.

References

  1. Kaur I, Mishin Y, Gust W (1995) Fundamentals of grain and interphase boundary diffusion. Wiley, Chichester

    Google Scholar 

  2. Herzig C, Mishin Y (2005) Grain boundary diffusion in metals. In: Heitjans P, Kärger J (eds) Diffusion in condensed matter. Springer, Berlin, pp 337–366. https://doi.org/10.1007/3-540-30970-5_8

    Chapter  Google Scholar 

  3. Koju RK, Mishin Y (2020) Atomistic study of grain-boundary segregation and grain-boundary diffusion in Al–Mg alloys. Acta Mater 201:596–603. https://doi.org/10.1016/j.actamat.2020.10.029

    Article  CAS  Google Scholar 

  4. Kochaev AI, L’vov PE (2023) Anisotropic diffusion in symmetric tilt grain boundaries in bcc iron: a DFT study. Materialia 32:101953. https://doi.org/10.1016/j.mtla.2023.101953

    Article  CAS  Google Scholar 

  5. Wang L, Kamachali RD (2021) Density-based grain boundary phase diagrams: application to Fe–Mn–Cr, Fe–Mn–Ni, Fe–Mn–Co, Fe–Cr–Ni and Fe–Cr–Co alloy systems. Acta Mater 207:116668. https://doi.org/10.1016/j.actamat.2021.116668

    Article  CAS  Google Scholar 

  6. L’vov PE, Svetukhin VV (2017) Influence of grain boundaries on the distribution of components in binary alloys. Phys Sol State 59:2453–2463. https://doi.org/10.1134/S1063783417120253

    Article  Google Scholar 

  7. Tikhonchev MYu, Meftakhutdinov RM, L’vov PE (2023) Mixing enthalpy near grain boundaries in Fe–Cr alloy: the results of atomistic simulation. J Nucl Mater 585:154611. https://doi.org/10.1016/j.jnucmat.2023.154611

    Article  CAS  Google Scholar 

  8. Zhang J, Liu W, Chen P, He H, He C, Yun D (2019) Molecular dynamics study of the interaction between symmetric tilt Σ5(210) 〈001〉 grain boundary and radiation-induced point defects in Fe–9Cr alloy. Nucl Inst Methods Phys Res B 451:99–103. https://doi.org/10.1016/j.nimb.2019.05.014

    Article  CAS  Google Scholar 

  9. Lejček P, Sob M, Paidar V (2017) Interfacial segregation and grain boundary embrittlement: an overview and critical assessment of experimental data and calculated results. Prog Mater Sci 87:83–139. https://doi.org/10.1016/j.pmatsci.2016.11.001

    Article  CAS  Google Scholar 

  10. Straumal BB, Kogtenkova OA, Murashkin MYu, Bulatov MF, Czeppe T, Zięba P (2017) Grain boundary wetting transition in Al–Mg alloys. Mater Lett 186:82–85. https://doi.org/10.1016/j.matlet.2016.09.088

    Article  CAS  Google Scholar 

  11. Kundin J, Sohaib H, Scheidung R, Steinbach I (2018) Phase-field modeling of pores and precipitates in polycrystalline systems. Model Sim Mater Sci Eng 26:065003. https://doi.org/10.1088/1361-651x/aacb94

    Article  CAS  Google Scholar 

  12. Liu J, Zhang K, Yang Y, Wang H, Zhu Y, Huang A (2022) Grain boundary α-phase precipitation and coarsening: comparing laser powder bed fusion with as-cast Ti–6Al–4V. Scripta Mater 207:114261. https://doi.org/10.1016/j.scriptamat.2021.114261

    Article  CAS  Google Scholar 

  13. Peng Z, Meiners T, Lu Y, Liebscher CH, Kostka A, Raabe D, Gault B (2022) Quantitative analysis of grain boundary diffusion, segregation and precipitation at a sub-nanometer scale. Acta Mater 225:117522. https://doi.org/10.1016/j.actamat.2021.117522

    Article  CAS  Google Scholar 

  14. Alabbad B, Tin S (2019) Effect of grain boundary misorientation on η-phase precipitation in Ni-base superalloy 718Plus. Mater Charact 151:53–63. https://doi.org/10.1016/j.matchar.2019.02.038

    Article  CAS  Google Scholar 

  15. L’vov PE, Svetukhin VV (2022) The effect of grain boundary mobility on the formation of second phases in nanostructured binary alloys. Phys Met Metall 123:1004–1010. https://doi.org/10.1134/S0031918X22600865

    Article  Google Scholar 

  16. L’vov PE, Sibatov RT (2022) Phase-field model of grain boundary diffusion in nanocrystalline solids: anisotropic fluctuations, anomalous diffusion, and precipitation. J Appl Phys 132:124304. https://doi.org/10.1063/5.0101489

    Article  CAS  Google Scholar 

  17. Fisher JC (1951) Calculation of diffusion penetration curves for surface and grain boundary diffusion. J Appl Phys 22:74–77. https://doi.org/10.1063/1.1699825

    Article  CAS  Google Scholar 

  18. Whipple RTP (1954) Concentration contours in grain boundary diffusion. Philos Mag Ser 45(371):1225–1236. https://doi.org/10.1080/14786441208561131

    Article  CAS  Google Scholar 

  19. Sibatov RT (2019) Anomalous grain boundary diffusion: fractional calculus approach. Adv Math Phys 2019:8017363. https://doi.org/10.1155/2019/8017363

    Article  Google Scholar 

  20. Chesser I, Koju R, Vellore A, Mishin Y (2023) Atomistic modeling of metal-nonmetal interphase boundary diffusion. Acta Mater 257:119172. https://doi.org/10.1016/j.actamat.2023.119172

    Article  CAS  Google Scholar 

  21. Chesser I, Mishin Y (2022) Point-defect avalanches mediate grain boundary diffusion. Comm Mater 3:90. https://doi.org/10.1038/s43246-022-00314-7

    Article  Google Scholar 

  22. L’vov PE, Sibatov RT, Svetukhin VV, (2023) Anisotropic grain boundary diffusion in binary alloys: phase-field approach. Mater Today Comm 35:106209. https://doi.org/10.1016/j.mtcomm.2023.106209

    Article  CAS  Google Scholar 

  23. Levine HS, MacCallum CJ (1960) Grain boundary and lattice diffusion in polycrystalline bodies. J Appl Phys 31:595–599. https://doi.org/10.1063/1.1735634

    Article  CAS  Google Scholar 

  24. Gottstein G, Shvindlerman LS (2010) Grain boundary migration in metals: thermodynamics, kinetics, applications. CRC Press, Boca Raton

    Google Scholar 

  25. Gorelik SS, Dobatkin SV, Kaputkina LM (2005) Recrystallization in metals and alloys, 3d edn. MISIS, Moscow

    Google Scholar 

  26. Ziéba P (2003) Diffusion along migrating grain boundaries. Interface Sci 11(1):51–58. https://doi.org/10.1023/A:1021530822389

    Article  Google Scholar 

  27. Neuhaus P, Herzig C, Gust W (1989) Grain boundary diffusion of indium in nickel and nickel-indium. Acta Metall 37(2):587–595. https://doi.org/10.1016/0001-6160(89)90242-3

    Article  CAS  Google Scholar 

  28. Glaeser AM, Evans JW (1986) Effect of grain boundary migration on apparent boundary diffusion coefficients. Acta Metall 34:1545–1552. https://doi.org/10.1016/0001-6160(86)90099-4

    Article  CAS  Google Scholar 

  29. Choi N, Taheriniya S, Yang S, Esin VA, Yu JH, Lee J-S, Wilde G, Divinski SV (2022) “Non-equilibrium” grain boundaries in additively manufactured CoCrFeMnNi high-entropy alloy: enhanced diffusion and strong segregation. J Appl Phys 132:245105. https://doi.org/10.1063/5.0133144

    Article  CAS  Google Scholar 

  30. Wang N, Chen L-Q (2016) Phase field methods. In: Deymer PA et al (eds) Multiscale paradigms in integrated computational materials science and engineering, vol 226. Springer, Cham, pp 195–217. https://doi.org/10.1007/978-3-319-24529-4_4

    Chapter  Google Scholar 

  31. Fan D, Chen L-Q (1997) Computer simulation of grain growth using a continuum field model. Acta Mater 45:611–622. https://doi.org/10.1016/S1359-6454(96)00200-5

    Article  CAS  Google Scholar 

  32. Fan D, Chen L-Q (1997) Diffusion-controlled grain growth in two-phase solids. Acta Mater 45:3297–3310. https://doi.org/10.1016/S1359-6454(97)00022-0

    Article  CAS  Google Scholar 

  33. Rajeshwari KS, Sankaran S, Kumar KCH, Rösner H, Peterlechner M, Esin VA, Divinski S, Wilde G (2020) Grain boundary diffusion and grain boundary structures of a Ni–Cr–Fe-alloy: evidences for grain boundary phase transitions. Acta Mater 195:501–518. https://doi.org/10.1016/j.actamat.2020.05.051

    Article  CAS  Google Scholar 

  34. Dwight HB (1957) Tables of integrals and other mathematical data. The Macmillan Company, New York

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Project No. 22-11-00036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel E. L’vov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4667 KB)

Supplementary file2 (AVI 10374 KB)

Supplementary file3 (AVI 10268 KB)

Supplementary file4 (AVI 11136 KB)

Supplementary file5 (MP4 5327 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

L’vov, P.E., Svetukhin, V.V. Solute diffusion in polycrystals with migrating grain boundaries: phase-field approach. J Mater Sci 59, 10904–10919 (2024). https://doi.org/10.1007/s10853-024-09826-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09826-8

Navigation