Log in

Microstructure, first-order magnetostructural transition, magnetocaloric properties and exchange bias effect in Ni45−xBixMn44Sn11 alloys

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Searching for large magnetocaloric material is the key of applicable magnetic refrigeration. We have systematically investigated the crystal structure, first-order magnetostructural transition, magnetic properties, magnetocaloric effect (MCE) and exchange bias (EB) effect for the Ni45−xBixMn44Sn11 (x = 0, 1, 3 and 5) alloys. The result of X-ray diffraction measured indicates that all compounds have L21 cubic structure at room temperature. The martensitic transformation (MT) temperature decreases with the increase in the Bi concentration and magnetic field. A large positive magnetic entropy change (\({\Delta S}_{{\text{M}}}\)) and refrigerant capacity (RC) of all samples were found across MT. The maximum \({\Delta S}_{{\text{M}}}\) and effective RC are 44.21 J kg−1 K−1 and 125.46 J kg−1 under the magnetic field of 5 T across MT for x = 3, respectively. All the samples exhibit EB effect below the blocking temperature of 60 K, indicating the existence of the magnetic coupled at antiferromagnetic and ferromagnetic interfaces. Under the field-cooled condition of 2 kOe, the maximum EB field (HE) is 793 Oe at 2 K for x = 3. Our findings demonstrate Ni–Bi–Mn–Sn alloys as one of the promising candidates of MCE material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Data and code availability

All data included in this paper are available upon request by contact with the contact corresponding author.

References

  1. Aprea C, Greco A, Maiorino A, Masselli C (2015) Magnetic refrigeration: an eco-friendly technology for the refrigeration at room temperature. J Phys Conf Ser 655:012026

    Article  Google Scholar 

  2. Li LW, Yan M (2023) Recent progress in the development of RE2TMTM’O6 double perovskite oxides for cryogenic magnetic refrigeration. J Mater Sci Technol 136:1–12

    Article  CAS  Google Scholar 

  3. Zhang YK, Ying JY, Gao XQ, Mo ZJ, Shen J, Li LW (2023) Exploration of the rare-earth cobalt nickel-based magnetocaloric materials for hydrogen liquefaction. J Mater Sci Technol 159:163–169

    Article  CAS  Google Scholar 

  4. Xu P, Hu L, Zhang ZQ, Wang HF, Li LW (2022) Electronic structure, magnetic properties and magnetocaloric performance in rare earths (RE) based RE2BaZnO5 (RE = Gd, Dy, Ho, and Er) compounds. Acta Mater 236:118114

    Article  CAS  Google Scholar 

  5. Zhang YK, Tian Y, Zhang ZQ, Jia YS, Zhang B, Jiang MQ, Wang J, Ren ZM (2022) Magnetic properties and giant cryogenic magnetocaloric effect in B-site ordered antiferromagnetic Gd2MgTiO6 double perovskite oxide. Acta Mater 226:117669

    Article  CAS  Google Scholar 

  6. Phan TL, Zhang P, Dan NH, Yen NH, Thanh PT, Thanh TD, Phan MH, Yu SC (2012) Coexistence of conventional and inverse magnetocaloric effects and critical behaviors in Ni50Mn50-xSnx (x = 13 and 14) alloy ribbons. Appl Phys Lett 101:212403

    Article  Google Scholar 

  7. Tao Q, Han ZD, Wang JJ, Qian B, Zhang P, Jiang XF, Wang DH, Du YW (2012) Phase stability and magnetic-field-induced martensitic transformation in Mn-rich NiMnSn alloys. Aip Adv 2:042181

    Article  CAS  Google Scholar 

  8. Li Y, Qin L, Huang SY, Li LW (2022) Enhanced magnetocaloric performances and tunable martensitic transformation in Ni35Co15Mn35-xFexTi15 all-d-metal Heusler alloys by chemical and physical pressures. Sci China Mater 65:486–493

    Article  CAS  Google Scholar 

  9. Zhang CL, Zou WQ, Xuan HC, Han ZD, Wang DH, Gu BX, Du YW (2007) Giant low-field magnetic entropy changes in Ni45Mn44−xCrxSn11 ferromagnetic shape memory alloys. J Phys D Appl Phys 40:7287–7290

    Article  CAS  Google Scholar 

  10. Thanh TD, Duc NH, Dan NH, Mai NT, Phan TL, Oh SK, Yu SC (2017) Magnetic and magnetocaloric properties of Ni–Ag–Mn–Sn ribbons and their composites. J Alloy Compd 696:1129–1138

    Article  CAS  Google Scholar 

  11. Wang HB, Xu CC, Wang LS, Wang THZ, Han ZD, Fang Y, Zhang L, Zhang CL, Qian B, Jiang XF (2020) Effect of Ge substitution on the magnetocaloric effect and exchange bias in Mn–Ni–Sn–Ge alloys: the role of Mn–Mn distance. J Alloy Compd 837:155280

    Article  CAS  Google Scholar 

  12. Chabri T, Barman A, Chatterjee S, Mollick SA, Nath TK, Mukherjee D (2021) Effects of transitional hysteresis on the large magnetocaloric and magnetoresistance properties of Ni–Mn–Co–Sn Heusler alloy. J Alloy Compd 863:158485

    Article  CAS  Google Scholar 

  13. O’Handley RC (1998) Model for strain and magnetization in magnetic shape-memory alloys. J Appl Phys 83:3263–3270

    Article  Google Scholar 

  14. Ma L, Zhang HW, Yu SY, Zhu ZY, Chen JL, Wu GH, Liu HY, Qu JP, Li YX (2008) Magnetic-field-induced martensitic transformation in MnNiGa: Co alloys. Appl Phys Lett 92:032509

    Article  Google Scholar 

  15. Wu ZG, Liu ZH, Yang H, Liu YN, Wu GH (2011) Metamagnetic phase transformation in Mn50Ni37In10Co3 polycrystalline alloy. Appl Phys Lett 98:061904

    Article  Google Scholar 

  16. Ghosh S, Sangwan S, Mandal S, Datta S, Kar M, Singh P, Nath TK (2022) Room temperature giant magneto-caloric effect in Ni45Mn44Sn11-XInX (X = 1, 3) disordered Heusler alloy: the role of martensite transition. J Magn Magn Mater 562:169797

    Article  CAS  Google Scholar 

  17. Ni ZN, Guo XM, Liu XT, Jiao YY, Meng FB, Luo HZ (2019) Understanding the magnetic structural transition in all-d-metal Heusler alloy Mn2Ni1.25Co0.25Ti0.5. J Alloy Compd 775:427–434

    Article  CAS  Google Scholar 

  18. Deltell A, Mohamed AEMA, Álvarez-Alonso P, Ipatov M, Andrés JP, González JA, Sánchez T, Zhukov A, Escoda ML, Suñol JJ, López Antón R (2021) Martensitic transformation, magnetic and magnetocaloric properties of Ni–Mn–Fe–Sn Heusler ribbons. J Mater Res Technol 12:1091–1103

    Article  CAS  Google Scholar 

  19. Li Y, Wang HB, Yao Y, Xu JH, Han ZD, Fang Y, Zhang L, Zhang CL, Qian B, Jiang XF (2019) Magnetic phase diagram, magnetocaloric effect, and exchange bias in Ni43Mn46Sn11−xGax Heusler alloys. J Magn Magn Mater 478:161–169

    Article  CAS  Google Scholar 

  20. Li MM, Shen JL, Wang X, Ma L, Li GK, Zhen CM, Hou DL, Wang M (2018) Enhanced antiferromagnetic interaction-induced spontaneous exchange bias in Mn50Ni40Sn10-xTix Heusler alloys. Intermetallics 96:13–17

    Article  CAS  Google Scholar 

  21. Esakki Muthu S, Rama Rao NV, Manivel Raja M, Raj Kumar DM, Mohan Radheep D, Arumugam S (2010) Influence of Ni/Mn concentration on the structural, magnetic and magnetocaloric properties in Ni50xMn37+xSn13 Heusler alloys. J Phys D Appl Phys 43:425002

    Article  Google Scholar 

  22. Aksoy S, Acet M, Deen PP, Mañosa L, Planes A (2009) Magnetic correlations in martensitic Ni–Mn-based Heusler shape-memory alloys: neutron polarization analysis. Phys Rev B 79:212401

    Article  Google Scholar 

  23. Ye M, Kimura A, Miura Y, Shirai M, Cui YT, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K, Kanomata T (2010) Role of Electronic Structure in the Martensitic Phase Transition of Ni2Mn1+xSn1x Studied by Hard-X-Ray Photoelectron Spectroscopy and Ab Initio Calculation. Phys Rev Lett 104:176401

    Article  CAS  PubMed  Google Scholar 

  24. Yu SY, Cao ZX, Ma L, Liu GD, Chen JL, Wu GH, Zhang B, Zhang XX (2007) Realization of magnetic field-induced reversible martensitic transformation in NiCoMnGa alloys. Appl Phys Lett 91:102507

    Article  Google Scholar 

  25. Bachaga T, Daly R, Suñol JJ, Saurina J, Escoda L, Legarreta LG, Hernando B, Khitouni M (2015) Effects of Co additions on the martensitic transformation and magnetic properties of Ni–Mn–Sn shape memory alloys. J Supercond Nov Magn 28:3087–3092

    Article  CAS  Google Scholar 

  26. Krenke T, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A (2005) Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni–Mn–Sn alloys. Phys Rev B 72:014412

    Article  Google Scholar 

  27. Ma YT, Yang YY, Gao Y, Hu Y (2021) Optimization of spontaneous exchange bias in Mn-rich Heusler alloys†. Phys Chem Chem Phys 23:17365

    Article  CAS  PubMed  Google Scholar 

  28. Liu K, Ma SC, Zhang ZS, Zhao XW, Yang B, Wang DH, Rehman SU, Zhong ZC (2020) Giant exchange bias effect in all-3d-metal Ni38.8Co2.9Mn37.9Ti20.4 thin film. Appl Phys Lett 116:022412

    Article  CAS  Google Scholar 

  29. Hua H, Wang JM, Jiang CB, Xu HB (2018) Reversible magnetic-field-induced martensitic transformation over a wide temperature window in Ni42-xCoxCu8Mn37Ga13 alloys. J Magn Magn Mater 454:97–102

    Article  CAS  Google Scholar 

  30. Qu YH, Cong DY, Sun XM, Nie ZH, Gui WY, Li RG, Ren Y, Wang YD (2017) Giant and reversible room-temperature magnetocaloric effect in Ti-doped Ni–Co–Mn-Sn magnetic shape memory alloys. Acta Mater 134:236–248

    Article  CAS  Google Scholar 

  31. Amaral JS, Amaral VS (2010) On estimating the magnetocaloric effect from magnetization measurements. J Magn Magn Mater 322:1552–1557

    Article  CAS  Google Scholar 

  32. Samanta S, Ghosh S, Chatterjee S, Mandal K (2022) Large magnetocaloric effect and magnetoresistance in Fe-Co doped Ni50-x(FeCo)xMn37Ti13 all-d-metal Heusler alloys. J Alloy Compd 910:164929

    Article  CAS  Google Scholar 

  33. Camarillo-Garcia JP, Hernández-Navarro F, Flores-Zúñiga H, Baltazar-Hernandez VH, Alvarado-Hernández F (2023) Contrasting response on magnetocaloric effect and refrigeration capacity due to Ni or Mn substitution by Fe in Ni–Mn–In–Co–Fe alloys. J Alloy Compd 934:167852

    Article  CAS  Google Scholar 

  34. Bai J, Liu D, Gu JL, Jiang XJ, Liang XZ, Guan ZQ, Zhang YD, Esling C, Zhao X, Zuo L (2021) Excellent mechanical properties and large magnetocaloric effect of spark plasma sintered Ni–Mn–In–Co alloy. J Mater Sci Techol 74:46–51

    Article  Google Scholar 

  35. Zhang YK, Ouyang JL, Wang X, Tian Y, Ren ZM (2022) Magneto-structural transformations and magnetocaloric effect in the Heusler type Ni48Cu2Mn36Sn14xTix melt-spun ribbons. Mater Chem Phys 290:126527

    Article  CAS  Google Scholar 

  36. Li Y, Qin L, Zhang HG, Li LW (2022) Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons. Chin Phys B 31:087103

    Article  CAS  Google Scholar 

  37. Zheng TT, Liu K, Chen HX, Wang C (2022) Large magnetocaloric and magnetoresistance effects during martensitic transformation in Heusler-type Ni44Co6Mn37In13 alloy. J Magn Magn Mater 563:170034

    Article  CAS  Google Scholar 

  38. Wang LM, Li ZB, Yang JJ, Yang B, Zhao X, Zuo L (2020) Large refrigeration capacity in a Ni48Co1Mn37In14 polycrystalline alloy with low thermal hysteresis. Intermetallics 125:106888

    Article  CAS  Google Scholar 

  39. Sharma VK, Chattopadhyay MK, Roy SB (2007) Large inverse magnetocaloric effect in Ni50Mn34In16. J Phys D Appl Phys 40:1869–1873

    Article  CAS  Google Scholar 

  40. Chen F, Sánchez Llamazares JL, Sánchez-Valdés CF, Chen FH, Li ZB, Tong YX, Li L (2020) Large magnetic entropy change and refrigeration capacity around room temperature in quinary Ni41Co9xFexMn40Sn10 alloys (x = 2.0 and 2.5). J Alloy Compd 825:154053

    Article  CAS  Google Scholar 

  41. Ye MF, **g C, Liu CQ, Zhang YL, Sun XD, Kang BJ, Deng DM, Li Z, Xu K (2018) The phase transitions, magnetocaloric effect, and exchange bias in Mn49Ni42-xCoxSn9 alloys. J Magn Magn Mater 462:178–184

    Article  CAS  Google Scholar 

  42. Wang BM, Liu Y, **a B, Ren P, Wang L (2012) Large exchange bias obtainable through zero-field cooling from an unmagnetized state in Ni–Mn–Sn alloys. J Appl Phys 111:043912

    Article  Google Scholar 

  43. Li Z, **g C, Chen JP, Yuan SJ, Cao SX, Zhang JC (2007) Observation of exchange bias in the martensitic state of Ni50Mn36Sn14 Heusler alloy. Appl Phys Lett 91:112505

    Article  Google Scholar 

  44. Ling YC, Liu RB, Wang HB, **ao SY, Qu DQ, Wang GY, Han ZD, Du J, Xu QY (2020) Martensitic transformation and large exchange bias in Mn-rich Ni–Mn–Sn thin films on mica substrates. J Alloy Compd 827:154303

    Article  CAS  Google Scholar 

  45. **ng M, Mohapatra J, Elkins J, Guragain D, Mishra SR, Liu JP (2021) Exchange bias and Verwey transition in Fe5C2/Fe3O4 core/shell nanoparticles†. Nanoscale 13:15837

    Article  CAS  PubMed  Google Scholar 

  46. Khan M, Dubenko I, Stadler S, Ali N (2007) Exchange bias in bulk Mn rich Ni–Mn–Sn Heusler alloys. J Appl Phys 102:113914

    Article  Google Scholar 

  47. Wang BM, Liu Y, Wang L, Huang SL, Zhao Y, Yang Y, Zhang H (2008) Exchange bias and its training effect in the martensitic state of bulk polycrystalline Ni49.5 Mn34.5In1.6. J Appl Phys 104:043916

    Article  Google Scholar 

  48. Zhao DW, Li GK, Wang SQ, Ma L, Zhen CM, Hou DL, Wang WH, Liu EK, Chen JL, Wu GH (2014) Tuning exchange bias by Co do** in Mn50Ni41xSn9Cox melt-spun ribbons. J Appl Phys 116:103910

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Key Research Project of Education Department of Anhui Provincial (Grant No. KJ2021A0671 and KJ2021A0672), the National Natural Science Foundation of China (NSFC, No. 52201223) and the Local Colleges Applied Basic Research Projects of Yunnan Province (No. 202101BA070001-233).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the work. Writing—original draft and analysis were performed by XS, and manuscript revision, editing and supervision were completed by CG, YH and YZ. YH and YZ contributed to review and funding acquisition. ZL was involved in data curation and methodology. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yinsheng Huang or Yuanlei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Huang, Y., Zhang, Y. et al. Microstructure, first-order magnetostructural transition, magnetocaloric properties and exchange bias effect in Ni45−xBixMn44Sn11 alloys. J Mater Sci 59, 8769–8783 (2024). https://doi.org/10.1007/s10853-024-09705-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09705-2

Navigation