Log in

Flexible BNOH@ polyurethane composites with high in-plane thermal conductivity for efficient thermal management

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Develo** flexible thermal management materials is quite urgent for emerging flexible electronics and wearable devices. Here, a novel strategy is used to prepare hydroxyl-functionalized boron nitride@polyurethane (BNOH@PU) composites with desired BN orientation in the in-plane direction through the foaming process of PU and hot-pressing. BNOH flakes can react with isocyanates to form amido linkages, which is beneficial for reducing interfacial thermal resistance (ITR) between BNOH and PU. In addition, BNOH flakes will be rearranged along the direction of PU backbones through the volume compression of the foaming process and trend to be oriented in the in-plane direction after hot-pressing. The out-of-plane or in-plane thermal conductivities of the composites are 1.69 and 3.19 W m−1 K−1 at 30 wt% BNOH content, and the corresponding thermal conductivity enhancement (TCE) is 1986% and 3838%, respectively. Meanwhile, BNOH@PU exhibited low ITR between BNOH flakes (1.252 × 10−7 K m2/W), good flexibility and stretchability, which was a promising thermal management material for wearable devices.

Graphical Abstract

The interfacial thermal resistance (ITR) and the phonon scattering between fillers and polymer matrix could be reduced significantly via the hydroxyl functionalization of BN. In-plane thermal conductivity enhanced BNOH@PU composites with desired BN orientation in the in-plane direction through the foaming process of PU and hot-pressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

All data are available to readers.

References

  1. Li Y-T, Liu W-J, Shen F-X et al (2022) Processing, thermal conductivity and flame retardant properties of silicone rubber filled with different geometries of thermally conductive fillers: a comparative study. Compos Part B-Eng 238:109907. https://doi.org/10.1016/j.compositesb.2022.109907

    Article  CAS  Google Scholar 

  2. Guo Y, Ruan K, Shi X, Yang X, Gu J (2020) Factors affecting thermal conductivities of the polymers and polymer composites: a review. Compos Sci Technol 193:108134. https://doi.org/10.1016/j.compscitech.2020.108134

    Article  CAS  Google Scholar 

  3. Zhang H, He Q, Yu H, Qin M, Feng Y, Feng W (2023) A bioinspired polymer-based composite displaying both strong adhesion and anisotropic thermal conductivity. Adv Funct Mater 33:2211985. https://doi.org/10.1002/adfm.202211985

    Article  CAS  Google Scholar 

  4. Ji C, Wang Y, Ye Z et al (2020) Ice-templated MXene/Ag–epoxy nanocomposites as high-performance thermal management materials. ACS Appl Mater Interfaces 12:24298–24307. https://doi.org/10.1021/acsami.9b22744

    Article  CAS  PubMed  Google Scholar 

  5. Yue C, Zhao L-W, Guan L-Z et al (2022) Vitrimeric silicone composite with high thermal conductivity and high repairing efficiency as thermal interface materials. J Colloid Interf Sci 620:273–283. https://doi.org/10.1016/j.jcis.2022.04.017

    Article  CAS  Google Scholar 

  6. Jiang R, Zheng X, Zhu S et al (2023) Recent advances in functional polyurethane chemistry: from structural design to applications. ChemistrySelect 8:e202204132. https://doi.org/10.1002/slct.202204132

    Article  CAS  Google Scholar 

  7. Wang S, He H, Ye X, Chen R, Li Q, Huang B (2022) Design of rGO-BN hybrids for enhanced thermal management properties of polyurethane composites fabricated by 3D printing. Compos Sci Technol 227:109591. https://doi.org/10.1016/j.compscitech.2022.109591

    Article  CAS  Google Scholar 

  8. Shin B, Mondal S, Lee M, Kim S, Huh Y-I, Nah C (2021) Flexible thermoplastic polyurethane-carbon nanotube composites for electromagnetic interference shielding and thermal management. Chem Eng J 418:129282. https://doi.org/10.1016/j.cej.2021.129282

    Article  CAS  Google Scholar 

  9. Qiu L, Zhu N, Feng Y, Zhang X, Wang X (2020) Interfacial thermal transport properties of polyurethane/carbon nanotube hybrid composites. Int J Heat Mass Tran 152:119565. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119565

    Article  CAS  Google Scholar 

  10. Hu R, Liu Y, Shin S et al (2020) Emerging materials and strategies for personal thermal management. Adv Energy Mater 10:1903921. https://doi.org/10.1002/aenm.201903921

    Article  CAS  Google Scholar 

  11. Zhao X, Zou D, Wang S (2022) Flexible phase change materials: Preparation, properties and application. Chem Eng J 431:134231. https://doi.org/10.1016/j.cej.2021.134231

    Article  CAS  Google Scholar 

  12. Ma L-Y, Soin N, Aidit S-N, Md Rezali F-A, Wan Muhamad Hatta S-F (2023) Recent advances in flexible solution-processed thin-film transistors for wearable electronics. Mater Sci Semicon Proc 165:107658. https://doi.org/10.1016/j.mssp.2023.107658

    Article  CAS  Google Scholar 

  13. Tan C, Dong Z, Li Y et al (2020) A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat Commun 11:3530. https://doi.org/10.1038/s41467-020-17301-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zuo X, Zhang X, Qu L, Miao J (2022) Smart fibers and textiles for personal thermal management in emerging wearable applications. Adv Mater Technol 8:2201127. https://doi.org/10.1002/admt.202201137

    Article  CAS  Google Scholar 

  15. Feng C-P, Wei F, Sun K-Y et al (2022) Emerging flexible thermally conductive films: mechanism, fabrication. Appl Nano-Micro Lett 14:127. https://doi.org/10.1007/s40820-022-00868-8

    Article  CAS  Google Scholar 

  16. Yang M, Hu D, Guo Y, Zhao X, Ma W (2022) Glucose-assisted exfoliation of hexagonal boron nitride nanosheets and modification with hyperbranched polymers for thermally conductive epoxy composites: implications for thermal management. ACS Appl Nano Mater 5:16315–16324. https://doi.org/10.1021/acsanm.2c03353

    Article  CAS  Google Scholar 

  17. Nan B, Wu K, Qu Z et al (2020) A multifunctional thermal management paper based on functionalized graphene oxide nanosheets decorated with nanodiamond. Carbon 161:132–145. https://doi.org/10.1016/j.carbon.2020.01.056

    Article  CAS  Google Scholar 

  18. Fu Y, Hansson J, Liu Y et al (2019) Graphene related materials for thermal management. 2D Materials 7:012001. https://doi.org/10.1088/2053-1583/ab48d9

    Article  CAS  Google Scholar 

  19. Guo H, Zhao H, Niu H et al (2021) Highly thermally conductive 3D printed graphene filled polymer composites for scalable thermal management applications. ACS Nano 15:6917–6928. https://doi.org/10.1021/acsnano.0c10768

    Article  CAS  PubMed  Google Scholar 

  20. Wang Z-Y, Sun X, Wang Y et al (2023) A high-performance thermally conductive and electrically insulating silver@siloxane/graphene/epoxy composites at low filler content: Fabrication, mechanism study of insulation and thermal conductivity enhancement. Ceram Int 49:2871–2880. https://doi.org/10.1016/j.ceramint.2022.09.271

    Article  CAS  Google Scholar 

  21. Sun X, Wang Z-Y, Wang Y et al (2023) Graphene/polyolefin elastomer films as thermal interface materials with high thermal conductivity, flexibility, and good adhesion. Chem Mater 35:2486–2494. https://doi.org/10.1021/acs.chemmater.2c03730

    Article  CAS  Google Scholar 

  22. Wei J, Liao M, Ma A et al (2020) Enhanced thermal conductivity of polydimethylsiloxane composites with carbon fiber. Compos Commun 17:141–146. https://doi.org/10.1016/j.coco.2019.12.004

    Article  Google Scholar 

  23. Li M, Ali Z, Wei X et al (2021) Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites. Compos Part B-Eng 208:108599. https://doi.org/10.1016/j.compositesb.2020.108599

    Article  CAS  Google Scholar 

  24. Ouyang Y, Ding F, Bai L et al (2020) Design of network Al2O3 spheres for significantly enhanced thermal conductivity of polymer composites. Compos Part A-Appl Sci Manuf 128:105673. https://doi.org/10.1016/j.compositesa.2019.105673

    Article  CAS  Google Scholar 

  25. Ouyang Y, Li X, Ding F, Bai L, Yuan F (2020) Simultaneously enhance thermal conductive property and mechanical properties of silicon rubber composites by introducing ultrafine Al2O3 nanospheres prepared via thermal plasma. Compos Sci Technol 190:108019. https://doi.org/10.1016/j.compscitech.2020.108019

    Article  CAS  Google Scholar 

  26. Yang W, Wang Y, Li Y et al (2021) Three-dimensional skeleton assembled by carbon nanotubes/boron nitride as filler in epoxy for thermal management materials with high thermal conductivity and electrical insulation. Compos Part B-Eng 224:109168. https://doi.org/10.1016/j.compositesb.2021.109168

    Article  CAS  Google Scholar 

  27. Cui Y, Bao D, Xu F et al (2021) Fabrication of EVA connected 3D BN network for enhancing the thermal conductivity of epoxy composites. Compos Part B-Eng 224:109203. https://doi.org/10.1016/j.compositesb.2021.109203

    Article  CAS  Google Scholar 

  28. Jiang H, Mateti S, Cai Q et al (2022) Quasi-isotropic thermal conductivity of polymer films enhanced by binder-free boron nitride spheres. Compos Sci Technol 230:109769. https://doi.org/10.1016/j.compscitech.2022.109769

    Article  CAS  Google Scholar 

  29. Han W, Chen M, Song W, Ge C, Zhang X (2020) Construction of hexagonal boron nitride@polystyrene nanocomposite with high thermal conductivity for thermal management application. Ceram Int 46:7595–7601. https://doi.org/10.1016/j.ceramint.2019.11.259

    Article  CAS  Google Scholar 

  30. Wang Y, Zhao Z, Gu A, Wei Z, Chen W, Yan C (2022) Enhancement of thermal conductivity of BN-Ni/epoxy resin composites through the orientation of BN-Ni fillers by magnetic field and hot-pressing. Ceram Int 48:33571–33579. https://doi.org/10.1016/j.ceramint.2022.07.301

    Article  CAS  Google Scholar 

  31. Guo Y, Lyu Z, Yang X et al (2019) Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites. Compos Part B-Eng 164:732–739. https://doi.org/10.1016/j.compositesb.2019.01.099

    Article  CAS  Google Scholar 

  32. Chen J, Xu X, Zhou J, Li B (2022) Interfacial thermal resistance: Past, present, and future. Rev Mod Phys 94:025002. https://doi.org/10.1103/revmodphys.94.025002

    Article  CAS  Google Scholar 

  33. Gu J, Ruan K (2021) Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett 13:110. https://doi.org/10.1007/s40820-021-00640-4

    Article  CAS  Google Scholar 

  34. Ruan K, Shi X, Guo Y, Gu J (2020) Interfacial thermal resistance in thermally conductive polymer composites: a review. Compos Commun 22:100518. https://doi.org/10.1016/j.coco.2020.100518

    Article  Google Scholar 

  35. Zhao Y, Zeng X, Ren L, **a X, Zeng X, Zhou J (2021) Heat conduction of electrons and phonons in thermal interface materials. Mater Chem Front 5:5617–5638. https://doi.org/10.1039/d0qm01136c

    Article  CAS  Google Scholar 

  36. Wang B, Shao W, Cao Q, Cui Z (2023) Thermal conductivity enhancement of graphene/epoxy nanocomposites by reducing interfacial thermal resistance. J Phys Chem C 127:10282–10290. https://doi.org/10.1021/acs.jpcc.3c00764

    Article  CAS  Google Scholar 

  37. Duan X, Cheng S, Li Z et al (2022) Flexible and environmentally friendly graphene natural rubber composites with high thermal conductivity for thermal management. Compos Part A-Appl Sci Manufact 163:107223. https://doi.org/10.1016/j.compositesa.2022.107223

    Article  CAS  Google Scholar 

  38. Wang Y, Gu A, Wei Z, Zhao Z, Cong H, Yan C (2023) Magnetic-induced dynamically enhanced in-plane or out-of-plane thermal conductivity of BN/Ag NWs@Ni/epoxy composites. Ceram Int 49:30248–30256. https://doi.org/10.1016/j.ceramint.2023.06.282

    Article  CAS  Google Scholar 

  39. Zhao Z-B, Liu J-D, Du X-Y, Wang Z-Y, Zhang C, Ming S-F (2022) Fabrication of silver nanoparticles/copper nanoparticles jointly decorated nitride flakes to improve the thermal conductivity of polymer composites. Colloid Surf A-Physicochem Eng Asp 635:128104. https://doi.org/10.1016/j.colsurfa.2021.128104

    Article  CAS  Google Scholar 

  40. Du X-X, Yang W-L, Zhu J-J, Fu L-C, Li D-Y, Zhou L-P (2022) Aligning diamond particles inside BN honeycomb for significantly improving thermal conductivity of epoxy composite. Compos Sci Technol 222:109370. https://doi.org/10.1016/j.compscitech.2022.109370

    Article  CAS  Google Scholar 

  41. Zhao N, Li J, Wang W, Gao W, Bai H (2022) Isotropically ultrahigh thermal conductive polymer composites by assembling anisotropic boron nitride nanosheets into a biaxially oriented network. ACS Nano 16:18959–18967. https://doi.org/10.1021/acsnano.2c07862

    Article  CAS  PubMed  Google Scholar 

  42. Peng Z, Lv Q, **g J, Pei H, Chen Y, Ivanov E (2023) FDM-3D printing LLDPE/BN@GNPs composites with double network structures for high-efficiency thermal conductivity and electromagnetic interference shielding. Compos Part B-Eng 251:110491. https://doi.org/10.1016/j.compositesb.2022.110491

    Article  CAS  Google Scholar 

  43. Liu M, Chiang S-W, Chu X et al (2020) Polymer composites with enhanced thermal conductivity via oriented boron nitride and alumina hybrid fillers assisted by 3-D printing. Ceram Int 46:20810–20818. https://doi.org/10.1016/j.ceramint.2020.05.096

    Article  CAS  Google Scholar 

  44. He Y, Kuang F, Che Z et al (2022) Achieving high out-of-plane thermal conductivity for boron nitride nano sheets/epoxy composite films by magnetic orientation. Compos Part A-Appl Sci Manuf 157:106933. https://doi.org/10.1016/j.compositesa.2022.106933

    Article  CAS  Google Scholar 

  45. Cho H-B, Tu NC, Fujihara T et al (2011) Epoxy resin-based nanocomposite films with highly oriented BN nanosheets prepared using a nanosecond-pulse electric field. Mater Lett 65:2426–2428. https://doi.org/10.1016/j.matlet.2011.05.005

    Article  CAS  Google Scholar 

  46. Ma T, Zhao Y, Ruan K et al (2019) Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures. ACS Appl Mater Interfaces 12:1677–1686. https://doi.org/10.1021/acsami.9b19844

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Z, Duan X, Qiu B et al (2020) Microstructure evolution and grain growth mechanisms of h-BN ceramics during hot-pressing. J Eur Ceram Soc 40:2268–2278. https://doi.org/10.1016/j.jeurceramsoc.2020.02.011

    Article  CAS  Google Scholar 

  48. Chen Q-M, Wu W, Wang Y, Liu C, Liu X-R, Cui S-F (2021) Polyurethane-templated 3D BN network for enhanced thermally conductive property of epoxy composites. Polymer 235:124239. https://doi.org/10.1016/j.polymer.2021.124239

    Article  CAS  Google Scholar 

  49. Chen C, Xue Y, Li Z et al (2019) Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles. Chem Eng J 369:1150–1160. https://doi.org/10.1016/j.cej.2019.03.150

    Article  CAS  Google Scholar 

  50. Pan D, Li Q, Zhang W et al (2021) Highly thermal conductive epoxy nanocomposites filled with 3D BN/C spatial network prepared by salt template assisted method. Compos Part B-Eng 209:108609. https://doi.org/10.1016/j.compositesb.2021.108609

    Article  CAS  Google Scholar 

  51. Su Z, Wang H, Ye X et al (2018) Synergistic enhancement of anisotropic thermal transport flexible polymer composites filled with multi-layer graphene (mG) and mussel-inspiring modified hexagonal boron nitride (h-BN). Compos Part A-Appl Sci Manuf 111:12–22. https://doi.org/10.1016/j.compositesa.2018.04.021

    Article  CAS  Google Scholar 

  52. Wang Y, Wu W, Drummer D et al (2020) Highly thermally conductive polybenzoxazine composites based on boron nitride flakes deposited with copper particles. Mater Des 191:108698. https://doi.org/10.1016/j.matdes.2020.108698

    Article  CAS  Google Scholar 

  53. Ren J, Li Q, Yan L et al (2020) Enhanced thermal conductivity of epoxy composites by introducing graphene@boron nitride nanosheets hybrid nanoparticles. Mater Des 191:108663. https://doi.org/10.1016/j.matdes.2020.108663

    Article  CAS  Google Scholar 

  54. Cui Y, Xu F, Bao D et al (2023) Construction of 3D interconnected boron nitride/carbon nanofiber hybrid network within polymer composite for thermal conductivity improvement. J Mater Sci Technol 147:165–175. https://doi.org/10.1016/j.jmst.2022.10.077

    Article  CAS  Google Scholar 

  55. Lin Y, Chen J, Jiang P, Huang X (2020) Wood annual ring structured elastomer composites with high thermal conduction enhancement efficiency. Chem Eng J 389:123467. https://doi.org/10.1016/j.cej.2019.123467

    Article  CAS  Google Scholar 

  56. Sun Y, Wang S, Li M, Gu Y, Zhang Z (2018) Improvement of out-of-plane thermal conductivity of composite laminate by electrostatic flocking. Mater Des 144:263–270. https://doi.org/10.1016/j.matdes.2018.02.031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Nature Science Foundations of China (No. 51873083).

Author information

Authors and Affiliations

Authors

Contributions

XY involved in investigation, conceptualization, methodology, validation, formal analysis, data curation. YF took part in conceptualization, methodology. HC involved in conceptualization, methodology, validation. ZZ involved in methodology, data curation. CY took part in methodology, funding acquisition, supervision, writing—review & editing. YW involved in project administration, supervision, methodology, formal analysis, data curation, writing—original draft, writing—review & editing.

Corresponding authors

Correspondence to Chao Yan or Yang Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10853_2024_9658_MOESM1_ESM.docx

The density of BNOH/PU with different fillers content before and after hot-pressing; The element map**s of BNOH@PU; Thermogravimetric analysis of PU and BNOH@PU. (DOCX 2657 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Fang, Y., Cong, H. et al. Flexible BNOH@ polyurethane composites with high in-plane thermal conductivity for efficient thermal management. J Mater Sci 59, 8220–8234 (2024). https://doi.org/10.1007/s10853-024-09658-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09658-6

Navigation