Log in

A review on research progress and prospects of agricultural waste-based activated carbon: preparation, application, and source of raw materials

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Agricultural waste is an economically and environmentally beneficial precursor material for the development of activated carbon (AC) due to its low price, wide sources, and large production scale. This makes it a crucial field for agricultural waste treatment and AC development. This paper reviews the research progress of agricultural waste-based activated carbon (AWAC), including the sources and characteristics of agricultural waste, and the effects of raw material characteristics and activation conditions on the performance of AWAC. It analyzes the advantages and disadvantages of various preparation methods of AWAC. Additionally, it explains the research status of AWAC in wastewater treatment, gas adsorption, catalyst carrier, and energy carrier. Finally, this paper summarizes the advantages and limitations of using agricultural wastes as raw materials for AC, and provides a prospect for raw material development, process optimization, and application expansion, taking into account the shortcomings of current research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. Sharma G, Sharma S, Kumar A, Lai CW, Naushad M, Shehnaz IJ, Stadler FJ (2022) Activated carbon as superadsorbent and sustainable material for diverse applications. Adsorpt Sci Technol 2022:4184809. https://doi.org/10.1155/2022/4184809

    Article  CAS  Google Scholar 

  2. Patidar K, Vashishtha M (2020) Characterization and isotherm study of activated carbon production from mustard stalk by ZnCl2 activation. J Indian Chem Soc 97:471–477

    CAS  Google Scholar 

  3. Saadi M, Rodríguez-Sánchez S, Ruiz B, Najar-Souissi S, Ouederni A, Fuente E (2022) From pomegranate peels waste to one-step alkaline carbonate activated carbons. Prospect as sustainable adsorbent for the renewable energy production. J Environ Chem Eng 10:107010. https://doi.org/10.1016/j.jece.2021.107010

    Article  CAS  Google Scholar 

  4. Jamil U, Zeeshan M, Khan SR, Saeed S (2023) Synthesis and two-step KOH based activation of porous biochar of wheat straw and waste tire for adsorptive exclusion of chromium (VI) from aqueous solution; thermodynamic and regeneration study. J Water Process Eng 53:103892. https://doi.org/10.1016/j.jwpe.2023.103892

    Article  Google Scholar 

  5. Hosseinzaei B, Hadianfard MJ, Esmaeilzadeh F, Recio-Ruiz MD, Ruiz-Rosas R, Rosas JM, Rodríguez-Mirasol J, Cordero T (2023) Assessment of agricultural residue to produce activated carbon-supported nickel catalysts and hydrogen rich gas. Catalysts 13:854. https://doi.org/10.3390/catal13050854

    Article  CAS  Google Scholar 

  6. Nam H, Choi W, Genuino DA, Capareda SC (2018) Development of rice straw activated carbon and its utilizations. J Environ Chem Eng 6:5221–5229. https://doi.org/10.1016/j.jece.2018.07.045

    Article  CAS  Google Scholar 

  7. Karimi-Maleh H, Karaman C, Karaman O, Karimi F, Vasseghian Y, Fu L, Baghayeri M, Rouhi J, Kumar PS, Show PL, Rajendran S, Sanati AL, Mirabi A (2022) Nanochemistry approach for the fabrication of Fe and N co-decorated biomass-derived activated carbon frameworks: a promising oxygen reduction reaction electrocatalyst in neutral media. J Nanostruct Chem 12:429–439. https://doi.org/10.1007/s40097-022-00492-3

    Article  CAS  Google Scholar 

  8. Yin QC, Yong X, Sha PE, Pang XC, Miao WX, Du XT, Zhang Q, Sui J, Yu JH, Dong HZ, Yu LY, Dong LF (2023) MnO2-modified soybean root derived porous carbon with excellent capacity deionization. Diamond Relat Mater 136:110036. https://doi.org/10.1016/j.diamond.2023.110036

    Article  CAS  Google Scholar 

  9. Jawad AH, Mallahb SH, Mastulia MS (2018) Adsorption behavior of methylene blue on acid-treated rubber (Hevea brasiliensis) leaf. Desalin Water Treat 124:297–307. https://doi.org/10.5004/dwt.2018.22915

    Article  CAS  Google Scholar 

  10. Azmi NZM, Buthiyappan A, Raman AAA, Patah MFA, Sufian S (2022) Recent advances in biomass based activated carbon for carbon dioxide—a review. J Ind Eng Chem 116:1–20. https://doi.org/10.1016/j.jiec.2022.08.021

    Article  CAS  Google Scholar 

  11. Jawad AH, Mehdi ZS, Ishak MAM, Ismail K (2018) Large surface area activated carbon from low-rank coal via microwave-assisted KOH activation for methylene blue adsorption. Desalin Water Treat 110:239–249. https://doi.org/10.5004/dwt.2018.22226

    Article  CAS  Google Scholar 

  12. Muhammad S, Khalil HPSA, Hamid SA, Albadn YM, Suriani AB, Kamaruzzaman S, Mohamed A, Allaq AA, Yahya EB (2022) Insights into agricultural-waste-based nano-activated carbon fabrication and modifications for wastewater treatment application. Agriculture 12:1737. https://doi.org/10.3390/agriculture12101737

    Article  CAS  Google Scholar 

  13. Singh R, Patel M (2022) Effective utilization of rice straw in value-added by-products: a systematic review of state of art and future perspectives. Biomass Bioenergy 159:106411. https://doi.org/10.1016/j.biombioe.2022.106411

    Article  CAS  Google Scholar 

  14. Liu XY, Tu SZ, Liu J, Liu ZC (2023) Emission forecasting from open burning of crop straw and policy analysis: the case for China. Energy Rep 9:5659–5669. https://doi.org/10.1016/j.egyr.2023.05.007

    Article  Google Scholar 

  15. Alengebawy A, Ran Y, Ghimire N, Osman AI, Ai P (2023) Rice straw for energy and value-added products in China: a review. Environ Chem Lett 21:31–32. https://doi.org/10.1007/s10311-023-01612-3

    Article  CAS  Google Scholar 

  16. Bhardwaj A, Kumar M, Alshehri M, Keshta I, Abugabah A, Sharma SK (2022) Smart water management framework for irrigation in agriculture. Environ Technol. https://doi.org/10.1080/09593330.2022.2039783

    Article  PubMed  Google Scholar 

  17. Yan C, Yan SS, Jia TY, Dong SK, Ma CM, Gong ZP (2019) Decomposition characteristics of rice straw returned to the soil in northeast China. Nutr Cycling Agroecosyst 114:211–224. https://doi.org/10.1007/s10705-019-09999-8

    Article  CAS  Google Scholar 

  18. Parihar DS, Narang MK, Dogra B, Prakash A, Mahadik A (2023) Rice residue burning in Northern India: an assessment of environmental concerns and potential solutions—a review. Environ Res Commun 5:062001. https://doi.org/10.1088/2515-7620/acb6d4

    Article  Google Scholar 

  19. Liu JM, Li YF, Mo HL, **e EJ, Fang JL, Gan WX (2022) Current utilization of waste biomass as filler for wood adhesives: a review. J Ind Eng Chem 115:48–61. https://doi.org/10.1016/j.jiec.2022.08.016

    Article  CAS  Google Scholar 

  20. Harun SN, Hanafiah MM, Noor MM (2022) Rice straw utilisation for bioenergy production: a brief overview. Energies 15:5542–5542. https://doi.org/10.3390/en15155542

    Article  CAS  Google Scholar 

  21. **g XD, Li Q, Qiao XL, Chen JW, Cai XY (2021) Effects of accumulated straw residues on sorption of pesticides and antibiotics in soils with maize straw return. J Hazard Mater 418:126213. https://doi.org/10.1016/j.jhazmat.2021.126213

    Article  CAS  PubMed  Google Scholar 

  22. Wang XL, Yang ZL, Liu X, Huang GQ, **ao WH, Han LJ (2021) Characteristics and non-parametric multivariate data mining analysis and comparison of extensively diversified animal manure. Waste Biomass Valorization 12:2343–2355. https://doi.org/10.1007/s12649-020-01178-z

    Article  CAS  Google Scholar 

  23. FAO (2022) World Food Situation. https://www.fao.org/worldfoodsituation/csdb/en/. Accessed 13 September 2023

  24. Logeswaran J, Shamsuddin A, Silitonga AS, Mahlia TMI (2020) Prospect of using rice straw for power generation: a review. Environ Sci Pollut Res 27:25956–25969. https://doi.org/10.1007/s11356-020-09102-7

    Article  CAS  Google Scholar 

  25. Zhou ZY, Lei FH, Li PF, Jiang JX (2018) Lignocellulosic biomass to biofuels and biochemicals: a comprehensive review with a focus on ethanol organosolv pretreatment technology. Biotechnol Bioeng 115:2683–2702. https://doi.org/10.1002/bit.26788

    Article  CAS  PubMed  Google Scholar 

  26. Vivek N, Nair LM, Mohan B, Nair SC, Sindhu R, Pandey A, Shurpali N, Binod P (2019) Bio-butanol production from rice straw - Recent trends, possibilities, and challenges. Bioresour Technol Rep 7:100224. https://doi.org/10.1016/j.biteb.2019.100224

    Article  Google Scholar 

  27. Brand MA, Rodrigues TM, Silva JP, Oliveira J (2021) Recovery of agricultural and wood wastes: the effect of biomass blends on the quality of pellets. Fuel 284:118881. https://doi.org/10.1016/j.fuel.2020.118881

    Article  CAS  Google Scholar 

  28. Zhang XF, Kong LJ, Song G, Chen DY (2016) Adsorption of uranium onto modified rice straw grafted with oxygen-containing groups. Environ Eng Sci 33:942–950. https://doi.org/10.1089/ees.2015.0019

    Article  CAS  Google Scholar 

  29. Sakhiya AK, Baghel P, Anand A, Vijay VK, Kaushal P (2021) A comparative study of physical and chemical activation of rice straw derived biochar to enhance Zn+2 adsorption. Bioresour Technol Rep 15:100774. https://doi.org/10.1016/j.biteb.2021.100774

    Article  CAS  Google Scholar 

  30. ** ZQ, Shah TR, Zhang L, Liu HY, Peng SB, Nie LX (2020) Effect of straw returning on soil organic carbon in rice-wheat rotation system: a review. Food Energy Secur 9:e200. https://doi.org/10.1002/fes3.200

    Article  Google Scholar 

  31. Zhang LL, Chen KL, He L, Peng LC (2018) Reinforcement of the bio-gas conversion from pyrolysis of wheat straw by hot caustic pre-extraction. Biotechnol Biofuels 11:72. https://doi.org/10.1186/s13068-018-1072-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nguyen TH, Nguyen VV, Nguyen NT, Nguyen T, Nguyen TVT, Ngo HL, Huynh LTN, Tran TN, Ho TTN, Nguyen TT, Le VH (2023) Preparation, characterization and CDI application of KOH-activated porous waste-corn-stalk-based carbon aerogel. J Porous Mat 30:1183–1193. https://doi.org/10.1007/s10934-022-01411-1

    Article  CAS  Google Scholar 

  33. Gonzalez PGA, Gariboti JCD, Silva JFL, Lopes ES, Abaide ER, Lopes MS, Concha VOC, Felisbino RF, Gomes EL, Tovar LP (2023) Soybean straw as a feedstock for value-added chemicals and materials: recent trends and emerging prospects. BioEnergy Res 16:717–740. https://doi.org/10.1007/s12155-022-10506-1

    Article  Google Scholar 

  34. Silva NC, Esposto BS, Maniglia BC, Tapia-Blacido DR, Martelli-Tosi M (2022) Using experimental design and response surface methodology to optimize nanocellulose production from two types of pretreated soybean straw. Macromol Chem Phys 223:2200050. https://doi.org/10.1002/macp.202200050

    Article  CAS  Google Scholar 

  35. Jiang JH, Li RY, Yang KX, Li YH, Deng L, Che DF (2023) Investigation on Pb2+ adsorption characteristics by AAEMs-rich biochar in aqueous solution: performance and mechanism. Environ Res 236:116731. https://doi.org/10.1016/j.envres.2023.116731

    Article  CAS  PubMed  Google Scholar 

  36. Thammasri W, Jantrasee R, Chaiprapa J, Jantrasee S (2023) Electrochemical properties of activated carbon from waste coffee grounds with hydrothermal-microwave radiation technique. J Mater Sci: Mater Electron 34:595. https://doi.org/10.1007/s10854-023-09963-x

    Article  CAS  Google Scholar 

  37. Wang S, Nam H, Lee D, Nam H (2022) H2S gas adsorption study using copper impregnated on KOH activated carbon from coffee residue for indoor air purification. J Environ Chem Eng 10:108797. https://doi.org/10.1016/j.jece.2022.108797

    Article  CAS  Google Scholar 

  38. Kourmentza C, Economou CN, Tsafrakidou R, Kornaros M (2018) Spent coffee grounds make much more than waste: Exploring recent advances and future exploitation strategies for the valorization of an emerging food waste stream. J Cleaner Prod 172:980–992. https://doi.org/10.1016/j.jclepro.2017.10.088

    Article  Google Scholar 

  39. Kanchanakul I, Srinophakun TR, Kuboon S, Kaneko H, Kraithong W, Miyauchi M, Yamaguchi A (2023) Development of photothermal catalyst from biomass ash (Bagasse) for hydrogen production via dry reforming of methane (DRM): an experimental study. Molecules 28:4578. https://doi.org/10.3390/molecules28124578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Prasara-A J, Gheewala SH, Silalertruksa T, Pongpat P, Sawaengsak W (2019) Environmental and social life cycle assessment to enhance sustainability of sugarcane-based products in Thailand. Clean Technol Environ Policy 21:1447–1458. https://doi.org/10.1007/s10098-019-01715-y

    Article  CAS  Google Scholar 

  41. Agarwal NK, Pattnaik F, Kumar M, Adlak K, Kumari P, Vijay VK, Kumar V (2023) Hydrothermal pretreatment of sugarcane bagasse pith for biogas production and digestate valorization to biochar. Ind Crops Prod 202:116973. https://doi.org/10.1016/j.indcrop.2023.116973

    Article  CAS  Google Scholar 

  42. Raut ER, Bedmohata MA, Chaudhari AR (2023) Study of synthesis and characterization of raw bagasse, its char and activated carbon prepared using chemical additive. Water Sci Technol 87:2233–2249. https://doi.org/10.2166/wst.2023.134

    Article  CAS  PubMed  Google Scholar 

  43. Palle K, Vunguturi S, Rao KS, Gayatri SN, Babu PR, Ali MM, Kola R (2022) Comparative study of adsorption isotherms on activated carbons synthesized from rice husk towards carbon dioxide adsorption. Chem Pap 76:7525–7534. https://doi.org/10.1007/s11696-022-02371-1

    Article  CAS  Google Scholar 

  44. Bedane A, Guo TX, Shirani B, **ao HN (2023) Textural characteristics of activated carbons prepared from agricultural residues-review. Can J Chem Eng 101:6718–6739. https://doi.org/10.1002/cjce.24960

    Article  CAS  Google Scholar 

  45. Barakat NAM, Irfan OM, Moustafa HM (2023) H3PO4/KOH activation agent for high performance rice husk activated carbon electrode in acidic media supercapacitors. Molecules 28:296. https://doi.org/10.3390/molecules28010296

    Article  CAS  Google Scholar 

  46. Sattar MS, Shakoor MB, Ali S, Rizwan M, Niazi NK, Jilani A (2019) Comparative efficiency of peanut shell and peanut shell biochar for removal of arsenic from water. Environ Sci Pollut Res 26:18624–18635. https://doi.org/10.1007/s11356-019-05185-z

    Article  CAS  Google Scholar 

  47. Harding KL, Vu T, Wysocky R, Malheiros R, Anderson KE, Toomer OT (2021) The effects of feeding a whole-in-shell peanut-containing diet on layer performance and the quality and chemistry of eggs produced. Agriculture 11:1176. https://doi.org/10.3390/agriculture11111176

    Article  CAS  Google Scholar 

  48. Wu HF, Chen RY, Du HX, Zhang J, Shi LM, Qin Y, Yue LZ, Wang JP (2019) Synthesis of activated carbon from peanut shell as dye adsorbents for wastewater treatment. Agriculture 37:34–48. https://doi.org/10.1177/0263617418807856

    Article  CAS  Google Scholar 

  49. Reis AMS, Vieira AT, Santos ALR, Ferreira MV, Batista ACF, Assunçao RMN, Rodrigues G, Ribeiro EAM, Faria AM, Braz J (2020) Regenerated cellulose membrane from peanut shell for biodiesel purification. Chem Soc 31:1011–1020. https://doi.org/10.21577/0103-5053.20190267

    Article  CAS  Google Scholar 

  50. Din NAS, Lim SJ, Maskat MY, Zaini NAM (2021) Bioconversion of coconut husk fibre through biorefinery process of alkaline pretreatment and enzymatic hydrolysis. Biomass Convers Biorefin 11:815–826. https://doi.org/10.1007/s13399-020-00895-8

    Article  CAS  Google Scholar 

  51. Patil U, Benjakul S (2018) Coconut milk and coconut oil: their manufacture associated with protein functionality. J Food Sci 83:2019–2027. https://doi.org/10.1111/1750-3841.14223

    Article  CAS  PubMed  Google Scholar 

  52. Yusop MFM, Jaya EMJ, Din ATM, Bello OS, Ahmad MA (2022) Single-stage optimized microwave-induced activated carbon from coconut shell for cadmium adsorption. Chem Eng Technol 45:1943–1951. https://doi.org/10.1002/ceat.202200051

    Article  CAS  Google Scholar 

  53. Zhang D, Zhang Y, Guo Y, Yue J (2019) Isolation and characterization of nanocellulose with a novel shape from walnut (Juglans Regia L.) shell agricultural waste. Polymers 11:1130. https://doi.org/10.3390/polym11071130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Roquia A, Alhashmi AKH, Alhasmi BHA (2021) Synthesis and characterisation of carbon nanotubes from waste of Juglans regia (walnut) shells. Fuller Nanotub Carbon N 29:860–867. https://doi.org/10.1080/1536383X.2021.1900123

    Article  CAS  Google Scholar 

  55. Tang SH, Lee LZ, Andrew VS, Akhmar ARM, Zaini MAA (2022) Effects of zinc chloride impregnation states on specific surface and dielectric properties of activated carbons. Int J Chem React Eng 20:1229–1233. https://doi.org/10.1515/ijcre-2021-0241

    Article  CAS  Google Scholar 

  56. Wei QL, Chen ZM, Wang XF, Yang XM, Wang ZC (2019) A two-step method for the preparation of high performance corncob-based activated carbons as supercapacitor electrodes using ammonium chloride as a pore forming additive. Carbon 144:841–841. https://doi.org/10.1016/j.carbon.2018.11.089

    Article  Google Scholar 

  57. Mahmoodi M, Aslibeiki B, Peymanfar R, Naghshara H (2022) Oleaster seed-derived activated carbon/ferrite nanocomposite for microwave absorption in the X-band range. Front Mater 9:1088196. https://doi.org/10.3389/fmats.2022.1088196

    Article  Google Scholar 

  58. Alardhi SM, Fiyadh SS, Salman AD, Adelikhah M (2023) Prediction of methyl orange dye (MO) adsorption using activated carbon with an artificial neural network optimization modeling. Heliyon 9:e12888. https://doi.org/10.1016/j.heliyon.2023.e12888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jain M, Yadav M, Kohout T, Lahtinen M, Garg VK, Sillanpää M (2018) Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution. Water Resour Ind 20:54–74. https://doi.org/10.1016/j.wri.2018.10.001

    Article  Google Scholar 

  60. Zahran AI, El-Zahhar AA, Ahmed HS, Masoud AM, Alghamdi MM, Naggar AMAE (2023) Mixture of soya bean and cotton seed residuals for production of activated carbon species as efficient adsorbent in the process of wastewater decontamination via dye disposal. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-023-03941-3

    Article  Google Scholar 

  61. Pallarés J, González-Cencerrado A, Arauzo I (2018) Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenergy 115:64–73. https://doi.org/10.1016/j.biombioe.2018.04.015

    Article  CAS  Google Scholar 

  62. Liu YX, Cui SB, Wu PJ, Liu L, Dou ZF, Wang Y (2023) Removal of gaseous elemental mercury using corn stalk biochars modified by a green oxidation technology. Fuel Process Technol 242:107621. https://doi.org/10.1016/j.fuproc.2022.107621

    Article  CAS  Google Scholar 

  63. Zhou JZ, Luo AR, Zhao YC (2018) Preparation and characterisation of activated carbon from waste tea by physical activation using steam. J Air Waste Manage Assoc 68:1269–1277. https://doi.org/10.1080/10962247.2018.1460282

    Article  CAS  Google Scholar 

  64. Ma YH (2017) Comparison of activated carbons prepared from wheat straw via ZnCl2 and KOH activation. Waste Biomass Valorization 8:549–559. https://doi.org/10.1007/s12649-016-9640-z

    Article  CAS  Google Scholar 

  65. Prakash MO, Gujjala R, Panchal M, Ojha S (2020) Mechanical characterization of arhar biomass based porous nano activated carbon polymer composites. Polym Compos 41:3113–3123. https://doi.org/10.1002/pc.25602

    Article  CAS  Google Scholar 

  66. Nayyef AW, Fadhil AB (2023) Elimination of dibenzothiophene from model gasoline by binary biowastes-derived activated carbon. Chem Eng Technol 46:681–693. https://doi.org/10.1002/ceat.202200407

    Article  CAS  Google Scholar 

  67. Ayinla RT, Dennis JO, Zaid HM, Sanusi YK, Usman F, Adebayo LL (2019) A review of technical advances of recent palm bio-waste conversion to activated carbon for energy storage. J Cleaner Prod 229:1427–1442. https://doi.org/10.1016/j.jclepro.2019.04.116

    Article  CAS  Google Scholar 

  68. Sakhiya AK, Vijay VK, Kaushal P (2023) Development of rice straw biochar through pyrolysis to improve drinking water quality in arsenic and manganese contaminated areas. Surf Interfaces 36:102582. https://doi.org/10.1016/j.surfin.2022.102582

    Article  CAS  Google Scholar 

  69. Menya E, Olupot PW, Storz H, Lubwama M, Kiros Y (2018) Production and performance of activated carbon from rice husks for removal of natural organic matter from water: a review. Chem Eng Res Des 129:271–296. https://doi.org/10.1016/j.cherd.2017.11.008

    Article  CAS  Google Scholar 

  70. Mariana M, Khalil HPSA, Yahya EB, Olaiya NG, Alfatah T, Suriani AB, Mohamed A (2022) Recent trends and future prospects of nanostructured aerogels in water treatment applications. J Water Process Eng 45:102481. https://doi.org/10.1016/j.jwpe.2021.102481

    Article  Google Scholar 

  71. Coker EN, Lujan-Flores X, Donaldson B, Yilmaz N, Atmanli A (2023) An Assessment of the conversion of biomass and industrial waste products to activated carbon. Energies 16:1606. https://doi.org/10.3390/en16041606

    Article  CAS  Google Scholar 

  72. Heidarinejad Z, Dehghani MH, Heidari M, Javedan G, Ali I, Sillanpää M (2020) Methods for preparation and activation of activated carbon: a review. Environ Chem Lett 18:393–415. https://doi.org/10.1007/s10311-019-00955-0

    Article  CAS  Google Scholar 

  73. Rezma S, Birot M, Hafiane A, Deleuze H (2017) Physically activated microporous carbon from a new biomass source: date palm petioles. C R Chim 20:881–887. https://doi.org/10.1016/j.crci.2017.05.003

    Article  CAS  Google Scholar 

  74. Gan YX (2021) Activated carbon from biomass sustainable sources. C 7:39. https://doi.org/10.3390/c7020039

    Article  CAS  Google Scholar 

  75. Cao Z, Hu S, Yu J, Wang LY, Yang Q, Song HO, Zhang SP (2022) Enhanced capacitive deionization of toxic metal ions using nanoporous walnut shell-derived carbon. J Environ Chem Eng 10:108245. https://doi.org/10.1016/j.jece.2022.108245

    Article  CAS  Google Scholar 

  76. Liu Y, Wang YG, Liu T, Zou L, Bai YY, **u HR (2023) High-performance sorbents from ionic liquid activated walnut shell carbon: an investigation of adsorption and regeneration. RSC Adv 13:22744–22757. https://doi.org/10.1039/d3ra03555g

    Article  CAS  Google Scholar 

  77. Jawad AH, Abdulhameed AS, Wilson LD, Syed-Hassan SSA, ALOthman ZA, Khan MR (2021) High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study. Chin J Chem Eng 32:281–290. https://doi.org/10.1016/j.cjche.2020.09.070

    Article  CAS  Google Scholar 

  78. Rashid RA, Jawad AH, Ishak MAM, Kasim NN (2016) KOH-activated carbon developed from biomass waste: adsorption equilibrium, kinetic and thermodynamic studies for Methylene blue uptake. Desalin Water Treat 57(56):27226–27236. https://doi.org/10.1080/19443994.2016.1167630

    Article  CAS  Google Scholar 

  79. Jawad AH, Abdulhameed AS (2020) Statistical modeling of methylene blue dye adsorption by high surface area mesoporous activated carbon from bamboo chip using KOH-assisted thermal activation. Energ Ecol Environ 5:456–469. https://doi.org/10.1007/s40974-020-00177-z

    Article  Google Scholar 

  80. Chen W, Gong M, Li KX, **a MW, Chen ZQ, **ao HY, Fang Y, Chen YQ, Yang HP, Chen HP (2020) Insight into KOH activation mechanism during biomass pyrolysis: chemical reactions between O-containing groups and KOH. Appl Energy 278:115730. https://doi.org/10.1016/j.apenergy.2020.115730

    Article  CAS  Google Scholar 

  81. Jawad AH, Abdulhameed AS, Mastuli MS (2020) Acid-factionalized biomass material for methyleneblue dye removal: a comprehensive adsorption and mechanism study. J Taibah Univ Sci 14(1):305–313. https://doi.org/10.1080/16583655.2020.1736767

    Article  Google Scholar 

  82. Jawad AH, Rashid RA, Ishak MAM, Wilson LD (2016) Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation: kinetic, equilibrium and thermodynamic studies. Desalin Water Treat 57(52):25194–25206. https://doi.org/10.1080/19443994.2016.1144534

    Article  CAS  Google Scholar 

  83. Jawad AH, Al-Heetimi DTA, Mastuli MS (2019) Biochar from orange (citrus sinensis) peels by acid activation for methylene blue adsorption. Iran J Chem Chem Eng 38(2):91–105. https://doi.org/10.30492/IJCCE.2019.30877

    Article  CAS  Google Scholar 

  84. Uddin KM, Malek NNA, Jawad AH, Sabar S (2023) Pyrolysis of rubber seed pericarp biomass treated with sulfuric acid for the adsorption of crystal violet and methylene green dyes: an optimized process. Int J Phytoremediat 25(4):393–402. https://doi.org/10.1080/15226514.2022.2086214

    Article  CAS  Google Scholar 

  85. Jawad AH (2018) Carbonization of rubber (Hevea brasiliensis) seed shell by one-step liquid phase activation with H2SO4 for methylene blue adsorption. Desalin Water Treat 129:279–288. https://doi.org/10.5004/dwt.2018.23090

    Article  CAS  Google Scholar 

  86. Jawad AH, Abdulhameed AS, Hanafiah MAKM, ALOthman ZA, Khan MR, Surip SN (2021) Numerical desirability function for adsorption of methylene blue dye by sulfonated pomegranate peel biochar: modeling, kinetic, isotherm, thermodynamic, and mechanism study. Korean J Chem Eng 38(7):1499–1509. https://doi.org/10.1007/s11814-021-0801-9

    Article  CAS  Google Scholar 

  87. Jawad AH, Bardhanb M, Islamb MA, Islamc MA, Syed-Hassand SSA, ALOthmane ZA, Khan MR (2020) Insights into the modeling, characterization and adsorption performance of mesoporous activated carbon from corn cob residue via microwave-assisted H3PO4 activation. Surfaces Interfaces 21:100688. https://doi.org/10.1016/j.surfin.2020.100688

    Article  CAS  Google Scholar 

  88. Jawad AH, Hum NNMF, Abdulhameed AS, Ishak MAM (2020) Mesoporous activated carbon from grass waste via H3PO4-activation for methylene blue dye removal: modelling, optimisation, and mechanism study. Int J Environ An Ch 102(17):6061–6077. https://doi.org/10.1080/03067319.2020.1807529

    Article  CAS  Google Scholar 

  89. Jawad AH, Sabar S, Ishak MAM, Wilson LD, Norrahma SSA, Talari MK, Farhan AM (2017) Microwave-assisted preparation of mesoporousactivated carbon from coconut (Cocos nucifera) leaf by H3PO4 activation for methylene blue adsorption. Chem Eng Commun 204(10):1143–1156. https://doi.org/10.1080/00986445.2017.1347565

    Article  CAS  Google Scholar 

  90. Yang HP, Chen PA, Chen W, Li KX, **a MW, **ao HY, Chen X, Chen YQ, Wang XH, Chen HP (2022) Insight into the formation mechanism of N, P co-doped mesoporous biochar from H3PO4 activation and NH3 modification of biomass. Fuel Process Technol 230:107215. https://doi.org/10.1016/j.fuproc.2022.107215

    Article  CAS  Google Scholar 

  91. Jawad AH, Rashida RA, Ismaila K, Sabar S (2017) High surface area mesoporous activated carbon developed from coconut leaf by chemical activation with H3PO4 for adsorption of methylene blue. Desalin Water Treat 74:326–335. https://doi.org/10.5004/dwt.2017.20571

    Article  CAS  Google Scholar 

  92. Jawad AH, Sahu UK, Mastuli MS, ALOthman ZA, Wilson LD (2022) Multivariable optimization with desirability function for carbon porosity and methylene blue adsorption by watermelon rind activated carbon prepared by microwave assisted H3PO4. Biomass Conv Bioref 14:577–591. https://doi.org/10.1007/s13399-022-02423-2

    Article  CAS  Google Scholar 

  93. Jawad AH, Sauodi MH, Mastuli MS, Aouda MA, Radzun KA (2018) Pomegranate peels collected from fresh juice shop as a renewable precursor for high surface area activated carbon with potential application for methylene blue adsorption. Desalin Water Treat 124:287–296. https://doi.org/10.5004/dwt.2018.22725

    Article  CAS  Google Scholar 

  94. Jawad AH, Saber SEM, Abdulhameed AS, Reghioua A, ALOthman ZA, Wilson LD (2022) Mesoporous activated carbon from mangosteen (Garcinia mangostana) peels by H3PO4 assisted microwave: optimization, characterization, and adsorption mechanism for methylene blue dye removal. Diam Relat Mater 129:109389. https://doi.org/10.1016/j.diamond.2022.109389

    Article  CAS  Google Scholar 

  95. Jawad AH, Malek NNA, Khadiran T, Alothman ZA, Yaseen ZM (2022) Mesoporous high-surface-area activated carbon from biomass waste via microwave-assisted-H3PO4 activation for methylene blue dye adsorption: An optimized process. Diam Relat Mater 128:109288. https://doi.org/10.1016/j.diamond.2022.109288

    Article  CAS  Google Scholar 

  96. Danish M, Zhou P, Lou Z, Ahmad T, Majeed S, Yahya ANA, Khanday WA, Khalil HPSA (2022) Preparation and characterization of banana trunk activated carbon using H3PO4 activation: a rotatable central composite design approach. Mater Chem Phys 282:125989. https://doi.org/10.1016/j.matchemphys.2022.125989

    Article  CAS  Google Scholar 

  97. Kim MJ, Choi SW, Kim H, Mun S, Lee KB (2020) Simple synthesis of spent coffee ground -based microporous carbons using K2CO3 as an activation agent and their application to CO2 capture. Chem Eng J 397:125404. https://doi.org/10.1016/j.cej.2020.125404

    Article  CAS  Google Scholar 

  98. Abd AA, Naji SZ, Hashim AS, Othman MR (2020) Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: a review. J Environ Chem Eng 8:104142. https://doi.org/10.1016/j.jece.2020.104142

    Article  CAS  Google Scholar 

  99. Suripa SN, Abdulhameedb AS, Garbac ZN, Syed-Hassand SSA, Ismaile K, Jawad AH (2020) H2SO4-treated Malaysian low rank coal for methylene blue dye decolourization and cod reduction: optimization of adsorption and mechanism study. Surfaces Interfaces 21:100641. https://doi.org/10.1016/j.surfin.2020.100641

    Article  CAS  Google Scholar 

  100. Amjah AN, Abdulhameed AS, Jawad AH, ALOthman ZA, Wilson LD (2023) Activated carbon from noodles food waste via microwave-assisted KOH for optimized brilliant green dye removal. Biomass Conv Bioref. https://doi.org/10.1007/s13399-023-04764-y

    Article  Google Scholar 

  101. Khounani Z, Hosseinzadeh-Bandbafha H, Moustakas K, Talebi AF, Goli SAH, Rajaeifar MA, Khoshnevisan B, Jouzani GS, Peng WX, Kim KH, Aghbashlo M, Tabatabaei M, Lam SS (2021) Environmental life cycle assessment of different biorefinery platforms valorizing olive wastes to biofuel, phosphate salts, natural antioxidant, and an oxygenated fuel additive (triacetin). J Cleaner Prod 278:123916. https://doi.org/10.1016/j.jclepro.2020.123916

    Article  CAS  Google Scholar 

  102. Kim S, Nam SN, Jang A, Jang M, Park CM, Son A, Her N, Heo J, Yoon Y (2022) Review of adsorption-membrane hybrid systems for water and wastewater treatment. Chemosphere 286:131916. https://doi.org/10.1016/j.chemosphere.2021.131916

    Article  CAS  PubMed  Google Scholar 

  103. Jawad AH, Surip SN (2022) Upgrading low rank coal into mesoporous activated carbon via microwave process for methylene blue dye adsorption: Box Behnken Design and mechanism study. Diam Relat Mater 127:109199. https://doi.org/10.1016/j.diamond.2022.109199

    Article  CAS  Google Scholar 

  104. Panahi Y, Mellatyar H, Farshbaf M, Sabet Z, Fattahi T, Akbarzadehe A (2018) Biotechnological applications of nanomaterials for air pollution and water/wastewater treatment. Mater Today: Proc 5:15550–15558. https://doi.org/10.1016/j.matpr.2018.04.162

    Article  CAS  Google Scholar 

  105. Fan LQ, Wan WX, Wang XD, Cai J, Chen FH, Chen W, Ji L, Luo HB, Cheng L (2019) Adsorption removal of Cr(VI) with activated carbon prepared by co-pyrolysis of rice straw and sewage sludge with ZnCl2 activation. Water Air Soil Pollut 230:233. https://doi.org/10.1007/s11270-019-4305-8

    Article  CAS  Google Scholar 

  106. Ghorbani F, Kamari S, Zamani S, Akbari S, Salehi M (2020) Optimization and modeling of aqueous Cr(VI) adsorption onto activated carbon prepared from sugar beet bagasse agricultural waste by application of response surface methodology. Surf Interfaces 18:100444. https://doi.org/10.1016/j.surfin.2020.100444

    Article  CAS  Google Scholar 

  107. He WY, Liao W, Yang JY, Jeyakumar P, Anderson C (2020) Removal of vanadium from aquatic environment using phosphoric acid modified rice straw. Biorem J 24:80–89. https://doi.org/10.1080/10889868.2020.1724073

    Article  CAS  Google Scholar 

  108. Daiem MMA, Sánchez-Polo M, Rashed AS, Kamal N, Said N (2019) Adsorption mechanism and modelling of hydrocarbon contaminants onto rice straw activated carbons. Pol J Chem Technol 21:1–12. https://doi.org/10.2478/pjct-2019-0032

    Article  CAS  Google Scholar 

  109. Yurtay A, Kılıç M (2023) Biomass-based activated carbon by flash heating as a novel preparation route and its application in high efficiency adsorption of metronidazole. Diamond Relat Mater 131:109603. https://doi.org/10.1016/j.diamond.2022.109603

    Article  CAS  Google Scholar 

  110. Alrowais R, Said N, Bashir MT, Ghazy A, Alwushayh B, Daiem MMA (2023) Adsorption of diphenolic acid from contaminated water onto commercial and prepared activated carbons from wheat straw. Water 15:555. https://doi.org/10.3390/w15030555

    Article  CAS  Google Scholar 

  111. Yang T, Hu XS, Zhang PJ, Chen XG, Wang WW, Wang Y, Liang Q, Zhang Y, Huang Q (2019) Study of pre-treatment of quinoline in aqueous solution using activated carbon made from low-cost agricultural waste (walnut shells) modified with ammonium persulfate. Water Sci Technol 79:2086–2094. https://doi.org/10.2166/wst.2019.206

    Article  CAS  PubMed  Google Scholar 

  112. Agarwal S, Singh AP, Mathur S (2023) Removal of COD and color from textile industrial wastewater using wheat straw activated carbon: an application of response surface and artificial neural network modeling. Environ Sci Pollut Res 30:41073–41094. https://doi.org/10.1007/s11356-022-25066-2

    Article  CAS  Google Scholar 

  113. Mousavi SA, Kamarehie B, Almasi A, Darvishmotevalli M, Salari M, Moradnia M, Azimi F, Ghaderpoori M, Neyazi Z, Karami MA (2021) Removal of Rhodamine B from aqueous solution by stalk corn activated carbon: adsorption and kinetic study. Biomass Convers Biorefin 13:7927–7936. https://doi.org/10.1007/s13399-021-01628-1

    Article  CAS  Google Scholar 

  114. Hamad KH, El-Sayed AM, Mohamed AG, Mostafa AH, El Deeb NM, Tedawy AH, El Leithy AG, Abdelhamid MF, Tawab SA, Aly ST (2023) Synthesis of activated carbon from agricultural wastes and its application in adsorption of dyes. Chem Eng Technol 46:1876–1885. https://doi.org/10.1002/ceat.202300020

    Article  CAS  Google Scholar 

  115. Mousavi SA, Moshashaei M, Abtin V (2022) Equilibrium, kinetics, and optimization studies of methylene blue removal from aqueous solution using corn stalk wastes. Desalin Water Treat 264:224–233. https://doi.org/10.5004/dwt.2022.28561

    Article  CAS  Google Scholar 

  116. Sirajo L, Zaini MAA (2023) Iron-loaded coconut shell-activated carbons for orthophosphate adsorption. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-023-04284-9

    Article  Google Scholar 

  117. Zhang ZB, Lei YQ, Li DW, Zhao JW, Wang YK, Zhou GY, Yan CW, He QX (2020) Sudden heating of H3PO4-loaded coconut shell in CO2 flow to produce super activated carbon and its application for benzene adsorption. Renew Energy 153:1091–1099. https://doi.org/10.1016/j.renene.2020.02.059

    Article  CAS  Google Scholar 

  118. Melati A, Padmasari G, Oktavian R, Rakhmadi FA (2022) A comparative study of carbon nanofiber (CNF) and activated carbon based on coconut shell for ammonia (NH3) adsorption performance. Appl Phys A: Mater Sci Process 128:211. https://doi.org/10.1007/s00339-022-05336-z

    Article  CAS  Google Scholar 

  119. Duan CM, Meng MW, Huang H, Wang H, Ding H, Zhang Q (2023) Adsorptivity and kinetics for low concentration of gaseous formaldehyde on bamboo-based activated carbon loaded with ammonium acetate particles. Environ Res 222:115364. https://doi.org/10.1016/j.envres.2023.115364

    Article  CAS  PubMed  Google Scholar 

  120. Conte G, Policicchio A, De Luca O, Rudolf P, Desiderio G, Agostino RG (2022) Copper-doped activated carbon from amorphous cellulose for hydrogen, methane and carbon dioxide storage. Int J Hydrogen Energy 47:18384–18395. https://doi.org/10.1016/j.ijhydene.2022.04.029

    Article  CAS  Google Scholar 

  121. Knerelman EI, Karozina YA, Shunina IG, Sedov IV (2022) Highly porous materials as potential components of natural gas storage systems: part 1 (a review). Pet Chem 62:561–582. https://doi.org/10.1134/S0965544122040077

    Article  CAS  Google Scholar 

  122. Abdulsalam J, Lawal AI, Ozonoh M, Onifade M, Bada S, Mulopo J (2023) Optimization of porous carbons for methane adsorption from South African coal wastes. Int J Coal Prep Util 43:264–287. https://doi.org/10.1080/19392699.2022.2040493

    Article  CAS  Google Scholar 

  123. Mirzaei S, Ahmadpour A, Shao AP, Arami-Niya A (2022) Rational design of carbon-based materials for purification and storage of energy carrier gases of methane and hydrogen. J Energy Storage 56:105967. https://doi.org/10.1016/j.est.2022.105967

    Article  Google Scholar 

  124. Stock S, Kostoglou N, Selinger J, Spirk S, Tampaxis C, Charalambopoulou G, Steriotis T, Rebholz C, Mitterer C, Paris O (2022) Coffee waste-derived nanoporous carbons for hydrogen storage. ACS Appl Energy Mater 5:10915–10926. https://doi.org/10.1021/acsaem.2c01573

    Article  CAS  Google Scholar 

  125. Zou RG, Qian MRK, Wang CX, Mateo W, Wang YP, Dai LL, Lin XA, Zhao YF, Huo ER, Wang L, Zhang XS, Kong X, Ruan RG, Lei HW (2022) Biochar: from by-products of agro-industrial lignocellulosic waste to tailored carbon-based catalysts for biomass thermochemical conversions. Chem Eng J 441:135972. https://doi.org/10.1016/j.cej.2022.135972

    Article  CAS  Google Scholar 

  126. El Mouchtari E, Daou C, Rafqah S, Najjar F, Anane H, Piram A, Hamade A, Briche S, Wong-Wah-Chung P (2020) TiO2 and activated carbon of Argania Spinosa tree nutshells composites for the adsorption photocatalysis removal of pharmaceuticals from aqueous solution. J Photochem Photobiol A 388:112183. https://doi.org/10.1016/j.jphotochem.2019.112183

    Article  CAS  Google Scholar 

  127. Utami M, Zahra’ HA, Khoirunisa DTA (2022) Green synthesis of magnetic activated carbon from peanut shells functionalized with TiO2 photocatalyst for Batik liquid waste treatment. Open Chem 20:1229–1238. https://doi.org/10.1515/chem-2022-0231

    Article  CAS  Google Scholar 

  128. Luo L, Lan YL, Zhang QQ, Deng JP, Luo LC, Zeng QZ, Gao HL, Zhao WG (2022) A review on biomass-derived activated carbon as electrode materials for energy storage supercapacitors. J Energy Storage 55:105839. https://doi.org/10.1016/j.est.2022.105839

    Article  Google Scholar 

  129. Zhang DZ, Zhang YX, Liu HL, Xu YH, Wu JJ, Li PP (2023) Effect of pyrolysis temperature on carbon materials derived from reed residue waste biomass for use in supercapacitor electrodes. J Phys Chem Solids 178:111318. https://doi.org/10.1016/j.jpcs.2023.111318

    Article  CAS  Google Scholar 

  130. Bennici S, Dutournie P, Cathalan J, Zbair M, Scuiller E, Vaulot C, Nguyen MH (2022) Heat storage: Hydration investigation of MgSO4/active carbon composites, from material development to domestic applications scenarios. Renew Sustain Energy Rev 158:112197. https://doi.org/10.1016/j.rser.2022.112197

    Article  CAS  Google Scholar 

  131. Yang XT, Shen LY, Yang QB, Wang KZ, Wang CL (2021) Study on the synthesis and thermal properties of magnesium chloride hexahydrate-magnesium sulfate heptahydrate-activated carbon phase change heat storage materials. Appl Phys A: Mater Sci Process 127:578. https://doi.org/10.1007/s00339-021-04675-7

    Article  CAS  Google Scholar 

  132. Astuti Y, Mei R, Darmawan A, Arnelli A, Widiyandari H (2022) Enhancement of electrical conductivity of bismuth oxide/activated carbon composite. Sci Iran 29:3119–3131. https://doi.org/10.24200/SCI.2022.57674.5359

    Article  Google Scholar 

  133. Zhang YP, Wei HL, Kimura H, Wu D, **e XB, Yang XY, Hou CX, Sun XQ, Du W (2022) Facile synthesis, microstructure and electrochemical performance of peanut shell derived porous activated carbon/Co3O4 composite for hybrid supercapacitors. Ceram Int 48:34576–34583. https://doi.org/10.1016/j.ceramint.2022.08.044

    Article  CAS  Google Scholar 

  134. Liu R, Wang JX, Yang WD (2022) Hierarchical porous heteroatoms-co-doped activated carbon synthesized from coconut shell and its application for supercapacitors. Nanomaterials 12:3504. https://doi.org/10.3390/nano12193504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21467002), Innovation Project of Guangxi College Student (202210602029), and Guangxi Science and Technology Major Project (Guike AA 18118044).

Author information

Authors and Affiliations

Authors

Contributions

Jiang Zhang and Chaomin Duan made equal contributions to this work, including the conception, writing and revision of the paper. The contributions of other authors include, but are not limited to, the collection and analysis of relevant data.

Corresponding authors

Correspondence to Mianwu Meng, Huang Huang or Heng Wang.

Ethics declarations

Conflict of interest

The authors confirm that there are no known conflicts of interest associated with this publication.

Ethical approval

Not Applicable.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Duan, C., Huang, X. et al. A review on research progress and prospects of agricultural waste-based activated carbon: preparation, application, and source of raw materials. J Mater Sci 59, 5271–5292 (2024). https://doi.org/10.1007/s10853-024-09526-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09526-3

Navigation