Log in

Anisotropic anomalous Nernst effect of metallic nickel assembled by aligned nanowires

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The anomalous Nernst effect (ANE), as a three-dimensional thermoelectric effect in ferromagnetic materials, is expected to break through the limitations of the traditional Seebeck effect, thereby improving thermoelectric conversion efficiency. This study reports an anisotropic anomalous Nernst effect in metallic nickel assembled by the alignment of nanowires. It is found that the ANE voltage varies with the angle to the alignment direction of nanowires within the in-plane of metallic nickel. The ANE voltage reaches 530 nV under a longitudinal temperature difference of 23 K when the magnetic field is applied parallel to the alignment direction of nanowires, which is 143% of its value in the vertical direction. This design concept for anisotropic materials may provide a novel path to enhanced thermoelectric efficiency in ANE-based thermoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

This work described has yet to be published. Data will be made available on request.

References

  1. Dong J, Suwardi A, Tan XY, Jia N, Saglik K, Ji R, Wang X, Zhu Q, Xu J, Yan Q (2023) Challenges and opportunities in low-dimensional thermoelectric nanomaterials. Mater Today 66:137–157. https://doi.org/10.1016/j.mattod.2023.04.021

    Article  CAS  Google Scholar 

  2. Al-Fartoos MMR, Roy A, Mallick TK, Tahir AA (2023) Advancing thermoelectric materials: a comprehensive review exploring the significance of one-dimensional nano structuring. Nanomaterials 13:2011. https://doi.org/10.3390/nano13132011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shi XL, Zou J, Chen ZG (2020) Advanced thermoelectric design: from materials and structures to devices. Chem Rev 120:7399–7515. https://doi.org/10.1021/acs.chemrev.0c00026

    Article  CAS  PubMed  Google Scholar 

  4. Zhou W, Yamamoto K, Miura A, Iguchi R, Miura Y, Uchida KI, Sakuraba Y (2021) Seebeck-driven transverse thermoelectric generation. Nat Mater 20:463–467. https://doi.org/10.1038/s41563-020-00884-2

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Ball P (2022) Semiconductor technology looks up. Nat Mater 21:132. https://doi.org/10.1038/s41563-021-01192-z

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Uchida K-i, Zhou W, Sakuraba Y (2021) Transverse thermoelectric generation using magnetic materials. Appl Phys Lett 118:140504. https://doi.org/10.1063/5.0046877

    Article  ADS  CAS  Google Scholar 

  7. Chester GV, Thellung A (1961) The law of Wiedemann and Franz. Proc Phys Soc 77:1005

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. Sakuraba Y (2016) Potential of thermoelectric power generation using anomalous Nernst effect in magnetic materials. Scr Mater 111:29–32. https://doi.org/10.1016/j.scriptamat.2015.04.034

    Article  CAS  Google Scholar 

  9. Wang YZ, Luo XM, Zhang Y, Fang C, Zhao MK, He WQ, Yu GQ, Wan CH, Han XF (2022) Antiferromagnetic-metal/ferromagnetic-metal periodic multilayers for on-chip thermoelectric generation. Phys Rev Appl 17:024075. https://doi.org/10.1103/PhysRevApplied.17.024075

    Article  ADS  CAS  Google Scholar 

  10. Sakai A, Minami S, Koretsune T, Chen T, Higo T, Wang Y, Nomoto T, Hirayama M, Miwa S, Nishio-Hamane D, Ishii F, Arita R, Nakatsuji S (2020) Iron-based binary ferromagnets for transverse thermoelectric conversion. Nature 581:53–57. https://doi.org/10.1038/s41586-020-2230-z

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Ikhlas M, Tomita T, Koretsune T, Suzuki M-T, Nishio-Hamane D, Arita R, Otani Y, Nakatsuji S (2017) Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat Phys 13:1085–1090. https://doi.org/10.1038/nphys4181

    Article  CAS  Google Scholar 

  12. Kitaura R, Ishibe T, Sharma H, Mizuguchi M, Nakamura Y (2021) Nanostructure design for high performance thermoelectric materials based on anomalous Nernst effect using metal/semiconductor multilayer. Appl Phys Express 14:075002. https://doi.org/10.35848/1882-0786/ac05db

    Article  ADS  CAS  Google Scholar 

  13. Lee KD, Kim DJ, Yeon Lee H, Kim SH, Lee JH, Lee KM, Jeong JR, Lee KS, Song HS, Sohn JW, Shin SC, Park BG (2015) Thermoelectric signal enhancement by reconciling the spin Seebeck and anomalous Nernst effects in ferromagnet/non-magnet multilayers. Sci Rep 5:10249. https://doi.org/10.1038/srep10249

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Seki T, Sakuraba Y, Masuda K, Miura A, Tsujikawa M, Uchida K, Kubota T, Miura Y, Shirai M, Takanashi K (2021) Enhancement of the anomalous Nernst effect in Ni/Pt superlattices. Phys Rev B 103:L020402. https://doi.org/10.1103/PhysRevB.103.L020402

    Article  ADS  CAS  Google Scholar 

  15. Uchida K-I, Kikkawa T, Seki T, Oyake T, Shiomi J, Qiu Z, Takanashi K, Saitoh E (2015) Enhancement of anomalous Nernst effects in metallic multilayers free from proximity-induced magnetism. Phys Rev B 92:094414. https://doi.org/10.1103/PhysRevB.92.094414

    Article  ADS  CAS  Google Scholar 

  16. Yang G, Sang L, Zhang C, Ye N, Hamilton A, Fuhrer MS, Wang X (2023) The role of spin in thermoelectricity. Nat Rev Phys 5:466–482. https://doi.org/10.1038/s42254-023-00604-0

    Article  CAS  Google Scholar 

  17. Crangle J, Goodman GM (1971) The magnetization of pure iron and nickel. Proc R Soc Lond A 321:477–491. https://doi.org/10.1098/rspa.1971.0044

    Article  ADS  CAS  Google Scholar 

  18. Zhang YF, Zhang LY, Wang J, Wei LM, Liu P, Wei H (2010) Synthesis of Ni nanowires via a hydrazine reduction route in aqueous ethanol solutions assisted by external magnetic fields. Nano Micro Lett 1:49–52. https://doi.org/10.1007/bf03353607

    Article  Google Scholar 

  19. Niu H, Chen Q, Ning M, Jia Y, Wang X (2004) Synthesis and one-dimensional self-assembly of acicular nickel nanocrystallites under magnetic fields. J Phys Chem B 108:3997–3999. https://doi.org/10.1021/jp0361172

    Article  CAS  Google Scholar 

  20. Sun L, Chen Q, Tang Y, **ong Y (2007) Formation of one-dimensional nickel wires by chemical reduction of nickel ions under magnetic fields. Chem Commun 27:2844–2846. https://doi.org/10.1039/b704689h

    Article  CAS  Google Scholar 

  21. Cortes A, Riveros G, Palma JL, Denardin JC, Marotti RE, Dalchiele EA, Gomez H (2009) Single-crystal growth of nickel nanowires: influence of deposition conditions on structural and magnetic properties. J Nanosci Nanotechnol 9:1992–2000. https://doi.org/10.1166/jnn.2009.374

    Article  CAS  PubMed  Google Scholar 

  22. Dresselhaus MS, Chen G, Tang MY, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial JP, Gogna P (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19:1043–1053. https://doi.org/10.1002/adma.200600527

    Article  CAS  Google Scholar 

  23. Xu Y, Du M, Zhang Z, Qiu Z (2023) Tunable electrical anisotropy of metallic nickel by self-assembly nanowires. Mater Today Commun 35:106248. https://doi.org/10.1016/j.mtcomm.2023.106248

    Article  CAS  Google Scholar 

  24. Bai L, Yuan F, Tang Q, Li J, Ryu H (2008) Preparation of well-dispersed spherical nickel powders with uniform size via mild solvothermal route. J Mater Sci 43:1769–1775. https://doi.org/10.1007/s10853-007-2408-x

    Article  ADS  CAS  Google Scholar 

  25. Zhang YF, Wang J, Zhang LY, Liu P, Lan TM, Zhang J, Wei LM, Jiang CH (2010) Preparation and growth mechanism of nickel nanowires under applied magnetic field. Nano Micro Lett 2:134–138. https://doi.org/10.1007/bf03353631

    Article  Google Scholar 

  26. Vega V, Bohnert T, Martens S, Waleczek M, Montero-Moreno JM, Gorlitz D, Prida VM, Nielsch K (2012) Tuning the magnetic anisotropy of Co–Ni nanowires: comparison between single nanowires and nanowire arrays in hard-anodic aluminum oxide membranes. Nanotechnology 23:465709. https://doi.org/10.1088/0957-4484/23/46/465709

    Article  CAS  PubMed  Google Scholar 

  27. Meneses F, Urreta SE, Escrig J, Bercoff PG (2018) Temperature dependence of the effective anisotropy in Ni nanowire arrays. Curr Appl Phys 18:1240–1247. https://doi.org/10.1016/j.cap.2018.06.014

    Article  ADS  Google Scholar 

  28. Vivas LG, Vazquez M, Escrig J, Allende S, Altbir D, Leitao DC, Araujo JP (2012) Magnetic anisotropy in CoNi nanowire arrays: Analytical calculations and experiments. Phys Rev B 85:03539. https://doi.org/10.1103/PhysRevB.85.035439

    Article  CAS  Google Scholar 

  29. Ariga T, Koyano M, Ishida A (2012) Nernst coefficient and scattering parameter in PbTe films. Phys Status Solidi (b) 249:1546–1549. https://doi.org/10.1002/pssb.201147571

    Article  ADS  CAS  Google Scholar 

  30. Nemov SA, Zhitinskaya MK, Shelimova LE, Svechnikova TE (2008) On the hole scattering anisotropy in the PbSb2Te4 layered compound from data on the Nernst–Ettingshausen coefficient. Phys Solid State 50:1215–1218. https://doi.org/10.1134/s1063783408070044

    Article  ADS  CAS  Google Scholar 

  31. Ma L, Zhang Y, Zhao H, Fu HR, Tang M, Yang HL, Shi Z, Tian N, You CY (2019) Anomalous Nernst effect in epitaxial Fe and FexNi1x alloy thin films. AIP Adv 9:035227. https://doi.org/10.1063/1.5079857

    Article  ADS  CAS  Google Scholar 

  32. Guin SN, Manna K, Noky J, Watzman SJ, Fu C, Kumar N, Schnelle W, Shekhar C, Sun Y, Gooth J, Felser C (2019) Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa. NPG Asia Mater 11:16. https://doi.org/10.1038/s41427-019-0116-z

    Article  ADS  CAS  Google Scholar 

  33. Fang C, Wan CH, Yuan ZH, Huang L, Zhang X, Wu H, Zhang QT, Han XF (2016) Scaling relation between anomalous Nernst and Hall effect in[Pt/Co]nmultilayers. Phys Rev B 93:054420. https://doi.org/10.1103/PhysRevB.93.054420

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation of China (Grant Nos. 11874098, 52171173).

Author information

Authors and Affiliations

Authors

Contributions

YX contributed to conceptualization, data curation, and writing—original draft; ZZ contributed to investigation and formal analysis; HS contributed to investigation and software; HM contributed to writing—editing; ZQ contributed to analysis and financial support.

Corresponding author

Correspondence to Zhiyong Qiu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhang, Z., Sun, H. et al. Anisotropic anomalous Nernst effect of metallic nickel assembled by aligned nanowires. J Mater Sci 59, 4596–4604 (2024). https://doi.org/10.1007/s10853-024-09466-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09466-y

Navigation