Log in

Stability enhancement and patterning of silver nanowire networks by conformal TiO2 coating for flexible transparent conductive electrodes

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Highly stable and patterned silver nanowire (AgNW) networks are essential and challenging for flexible or wearable electronics. In this work, TiO2 coatings by atomic layer deposition (ALD) technique were introduced for the fabrication of highly stable and patterned AgNW/TiO2 composites for flexible transparent conductive electrodes (TCEs). It was found that TiO2 coating could not only enhance the adhesion of AgNWs to the substrate, but also improve the flexibility of AgNW networks. This phenomenon was owed to the stability enhancement by the three-dimensional conformal deposition of TiO2 coatings. What’s more, the thermal and oxidation stabilities of AgNW networks could be greatly improved because of the barrier performance of TiO2 coating layer. Based on the stability enhancement by TiO2 coatings, a novelty patterning method of the AgNW networks was implemented by cooperating with photolithography and ultrasonic concussion process. AgNW networks with the strip width of 200 μm were well patterned without defects. Finally, highly stable and patterned AgNW/TiO2 composites were applied as flexible TCEs for alternating current electroluminescent (ACEL) devices. The whole ACEL device showed a high transparency of around 40%, and the flexibility and the lifetime of ACEL devices were correspondingly improved owe to the enhancement by TiO2 coatings. These results indicated the prospects of the AgNW/TiO2 composites on the applications to flexible or wearable electronics.

Graphical abstract

TiO2 coatings by atomic layer deposition (ALD) technique were introduced for the fabrication of highly stable and patterned AgNW/TiO2 composites for flexible transparent conductive electrodes (TCEs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Qiu T, Luo B, Akinoglu EM, Yun JH, Gentle IR, Wang L (2020) Trilayer nanomesh films with tunable wettability as highly transparent, flexible, and recyclable electrodes. Adv Funct Mater 30:2002556. https://doi.org/10.1002/adfm.202002556

    Article  CAS  Google Scholar 

  2. Fan Q, Miao J, Liu X, Zuo X, Zhang W, Tian M, Zhu S, Qu L, Zhang X (2022) Biomimetic hierarchically silver nanowire interwoven MXene mesh for flexible transparent electrodes and invisible camouflage electronics. Nano Lett 22:740–750. https://doi.org/10.1021/acs.nanolett.1c04185

    Article  CAS  Google Scholar 

  3. Kim SY, Shin WH, Kim HS, Jung DW, Kim MJ, Kim K, Roh JW, Hwang S, Lee J, Yang D, Sohn H, Kim SH, Jung C, Cho E, Yun DJ, Kim J, Cho YJ, Kim SI, Lee KH, Kwak C, Ko DS (2021) Silver nanowire network hybridized with silver nanoparticle-anchored ruthenium oxide nanosheets for foldable transparent conductive electrodes. ACS Appl Mater Interfaces 13:11396–11402. https://doi.org/10.1021/acsami.0c19471

    Article  CAS  Google Scholar 

  4. Zhang C, Anasori B, Seral Ascaso A, Park SH, McEvoy N, Shmeliov A, Duesberg GS, Coleman JN, Gogotsi Y, Nicolosi V (2017) Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv Mater 29:1702678. https://doi.org/10.1002/adma.201702678

    Article  CAS  Google Scholar 

  5. Lin Y, Li Q, Ding C, Wang J, Yuan W, Liu Z, Su W, Cui Z (2022) High-resolution and large-size stretchable electrodes based on patterned silver nanowires composites. Nano Res 15:4590–4598. https://doi.org/10.1007/s12274-022-4088-x

    Article  CAS  Google Scholar 

  6. Li P, Zhang Y, Zheng Z (2019) Polymer-assisted metal deposition (PAMD) for flexible and wearable electronics: principle, materials, printing, and devices. Adv Mater 31:1902987. https://doi.org/10.1002/adma.201902987

    Article  CAS  Google Scholar 

  7. Zhang S, Li S, **a Z, Cai K (2020) A review of electronic skin: soft electronics and sensors for human health. J Mater Chem B 8:852–862. https://doi.org/10.1039/c9tb02531f

    Article  CAS  Google Scholar 

  8. Herbert R, Kim JH, Kim YS, Lee HM, Yeo WH (2018) Soft material-enabled, flexible hybrid electronics for medicine, healthcare, and human-machine interfaces. Materials 11:187. https://doi.org/10.3390/ma11020187

    Article  CAS  Google Scholar 

  9. Fan X (2021) Do** and design of flexible transparent electrodes for high-performance flexible organic solar cells: recent advances and perspectives. Adv Funct Mater 31:2009399. https://doi.org/10.1002/adfm.202009399

    Article  CAS  Google Scholar 

  10. Zhu H, Shen Y, Li Y, Tang J (2018) Recent advances in flexible and wearable organic optoelectronic devices. J Semicond 39:011011. https://doi.org/10.1088/1674-4926/39/1/011011

    Article  CAS  Google Scholar 

  11. Park JH, Hwang GT, Kim S, Seo J, Park HJ, Yu K, Kim TS, Lee K (2017) Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester. Adv Mater 29:1603473. https://doi.org/10.1002/adma.201603473

    Article  CAS  Google Scholar 

  12. Zhou W, Yao S, Wang H, Du Q, Ma Y, Zhu Y (2020) Gas-permeable, ultrathin, stretchable epidermal electronics with porous electrodes. ACS Nano 14:5798–5805. https://doi.org/10.1021/acsnano.0c00906

    Article  CAS  Google Scholar 

  13. Lin Y, Yuan W, Ding C, Chen S, Su W, Hu H, Cui Z, Li F (2020) Facile and efficient patterning method for silver nanowires and its application to stretchable electroluminescent displays. ACS Appl Mater Interfaces 12:24074–24085. https://doi.org/10.1021/acsami.9b21755

    Article  CAS  Google Scholar 

  14. Liu GS, Xu Y, Kong Y, Wang L, Wang J, **e X, Luo Y, Yang BR (2018) Comprehensive stability improvement of silver nanowire networks via self-assembled mercapto inhibitors. ACS Appl Mater Interfaces 10:37699–37708. https://doi.org/10.1021/acsami.8b13329

    Article  CAS  Google Scholar 

  15. Liu GS, Zheng H, Zeng Z, Wang Y, Guo W, Wang T, Chen H, Chen Y, Hu S, Chen L, Chen Y, **e W, Yang BR, Luo Y (2022) Self-assembled monolayer modulated Plateau–Rayleigh instability and enhanced chemical stability of silver nanowire for invisibly patterned, stable transparent electrodes. Nano Res 15:4552–4562. https://doi.org/10.1007/s12274-021-4042-3

    Article  CAS  Google Scholar 

  16. Zilberberg K, Gasse F, Pagui R, Polywka A, Behrendt A, Trost S, Heiderhoff R, Goerrn P, Riedl T (2014) Highly robust indium-free transparent conductive electrodes based on composites of silver nanowires and conductive metal oxides. Adv Funct Mater 24:1671–1678. https://doi.org/10.1002/adfm.201303108

    Article  CAS  Google Scholar 

  17. Bai S, Wang H, Yang H, Zhang H, Chen T, Guo X (2018) Fused silver nanowires with silica sol nanoparticles for smooth, flexible, electrically conductive and highly stable transparent electrodes. RSC Adv 8:13466–13473. https://doi.org/10.1039/c8ra01569d

    Article  CAS  Google Scholar 

  18. Zhu R, Chung CH, Cha KC, Yang W, Zheng YB, Zhou H, Song TB, Chen CC, Weiss PS, Li G, Yang Y (2011) Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors. ACS Nano 5:9877–9882. https://doi.org/10.1021/nn203576v

    Article  CAS  Google Scholar 

  19. Ricciardulli AG, Yang S, Wetzelaer GJAH, Feng X, Blom PWM (2018) Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics. Adv. Funct. Mater. 28:1706010. https://doi.org/10.1002/adfm.201706010

    Article  CAS  Google Scholar 

  20. Zhang G, Wu H, Wang X, Wang T, Liu C (2016) Transparent capacitors with hybrid ZnO: Al and Ag nanowires as electrodes. Nanotechnology 27:105204. https://doi.org/10.1088/0957-4484/27/10/105204

    Article  CAS  Google Scholar 

  21. Jiang Y, Li M, Chen C, Xue Z, **e X, Zhou X, Mai YW (2018) Effect of elastic modulus mismatch of epoxy/titanium dioxide coated silver nanowire composites on the performance of thermal conductivity. Compos Sci Technol 165:206–213. https://doi.org/10.1016/j.compscitech.2018.06.028

    Article  CAS  Google Scholar 

  22. Ali K, Duraisamy N, Kim CY, Choi KH (2014) Al2O3 coatings fabrication on silver nanowires through low temperature atomic layer deposition. Mater Manuf Process 29:1056–1061. https://doi.org/10.1080/10426914.2014.930959

    Article  CAS  Google Scholar 

  23. Viet Huong N, Resende J, Papanastasiou DT, Fontanals N, Jimenez C, Munoz-Rojas D, Bellet D (2019) Low-cost fabrication of flexible transparent electrodes based on Al doped ZnO and silver nanowire nanocomposites: impact of the network density. Nanoscale 11:12097–12107. https://doi.org/10.1039/c9nr02664a

    Article  CAS  Google Scholar 

  24. Han X, Huang Y, Wang J, Zhang G, Li T, Liu P (2022) Flexible hierarchical ZnO/AgNWs/carbon cloth-based film for efficient microwave absorption, high thermal conductivity and strong electro-thermal effect. Compos Part B-Eng 229:109458. https://doi.org/10.1016/j.compositesb.2021.109458

    Article  CAS  Google Scholar 

  25. Aghazadehchors S, Viet Huong N, Munoz Rojas D, Jimenez C, Rapenne L, Ngoc Duy N, Bellet D (2019) Versatility of bilayer metal oxide coatings on silver nanowire networks for enhanced stability with minimal transparency loss. Nanoscale 11:19969–19979. https://doi.org/10.1039/c9nr05658k

    Article  CAS  Google Scholar 

  26. Song TB, Rim YS, Liu F, Bob B, Ye S, Hsieh YT, Yang Y (2015) Highly robust silver nanowire network for transparent electrode. ACS Appl Mater Interfaces 7:24601–24607. https://doi.org/10.1021/acsami.5b06540

    Article  CAS  Google Scholar 

  27. Yeh MH, Chen PH, Yang YC, Chen GH, Chen HS (2017) Investigation of Ag–TiO2 interfacial reaction of highly stable Ag Nanowire transparent conductive film with conformal TiO2 coating by atomic layer deposition. ACS Appl Mater Interfaces 9:10788–10797. https://doi.org/10.1021/acsami.6b13070

    Article  CAS  Google Scholar 

  28. Hao T, Wang S, Xu H, Zhang X, Magdassi S, Pan L, Song Y, Li Y, Zhao J (2022) Novel transparent TiO2/AgNW−Si(NH2)/PET hybrid films for flexible smart windows. ACS Appl Mater Interfaces 14:21613–21622. https://doi.org/10.1021/acsami.1c25002

    Article  CAS  Google Scholar 

  29. Ramasamy P, Seo DM, Kim SH, Kim J (2012) Effects of TiO2 shells on optical and thermal properties of silver nanowires. J Mater Chem 22:11651–11657. https://doi.org/10.1039/c2jm00010e

    Article  CAS  Google Scholar 

  30. Jang I, Kang T, Cho W, Kang YS, Oh SG, Im SS (2015) Preparation of silver nanowires coated with TiO2 using chemical binder and their applications as photoanodes in dye sensitized solar cell. J Phys Chem Solids 86:122–130. https://doi.org/10.1016/j.jpcs.2015.07.005

    Article  CAS  Google Scholar 

  31. Kumari MGCM, Perera CS, Dassanayake BS, Dissanayake MAKL, Senadeera GKR (2019) Highly efficient plasmonic dye-sensitized solar cells with silver nanowires and TiO2 nanofibres incorporated multi-layered photoanode. Electrochim Acta 298:330–338. https://doi.org/10.1016/j.electacta.2018.12.079

    Article  CAS  Google Scholar 

  32. Dong H, Wu Z, Lu F, Gao Y, El Shafei A, Jiao B, Ning S, Hou X (2014) Optics-electrics highways: plasmonic silver nanowires@TiO2 core-shell nanocomposites for enhanced dye-sensitized solar cells performance. Nano Energy 10:181–191. https://doi.org/10.1016/j.nanoen.2014.09.011

    Article  CAS  Google Scholar 

  33. Hu L, Qi W, Li Y (2017) Coating strategies for atomic layer deposition. Nanotechnol Rev 6:527–547. https://doi.org/10.1515/ntrev-2017-0149

    Article  CAS  Google Scholar 

  34. Kwon JH, Jeon Y, Choi S, Park JW, Kim H, Choi KC (2017) Functional design of highly robust and flexible thin-film encapsulation composed of quasi-perfect sublayers for transparent, flexible displays. ACS Appl Mater Interfaces 9:43983–43992. https://doi.org/10.1021/acsami.7b14040

    Article  CAS  Google Scholar 

  35. Wang X, Zhao Z, Zhang C, Li Q, Liang X (2020) Surface modification of catalysts via atomic layer deposition for pollutants elimination. Catalysts 10:1298. https://doi.org/10.3390/catal10111298

    Article  CAS  Google Scholar 

  36. Tseng MH, Su DY, Chen GL, Tsai FY (2021) Nano-laminated metal oxides/polyamide stretchable moisture- and gas-barrier films by integrated atomic/molecular layer deposition. ACS Appl Mater Interfaces 13:27392–27399. https://doi.org/10.1021/acsami.1c03895

    Article  CAS  Google Scholar 

  37. Tseng JY, Lee L, Huang YC, Chang JH, Su TY, Shih YC, Lin HW, Chueh YL (2018) Pressure welding of silver nanowires networks at room temperature as transparent electrodes for efficient organic light-emitting diodes. Small 14:e1800541. https://doi.org/10.1002/smll.201800541

    Article  CAS  Google Scholar 

  38. Chen G, Weng Y, Wang W, Hong D, Zhou L, Zhou X, Wu C, Zhang Y, Yan Q, Yao J, Guo T (2021) Spontaneous formation of random wrinkles by atomic layer infiltration for anticounterfeiting. ACS Appl Mater Interfaces 13:27548–27556. https://doi.org/10.1021/acsami.1c04076

    Article  CAS  Google Scholar 

  39. **e H, Yang X, Du D, Zhao Y, Wang Y (2018) Flexible transparent conductive film based on random networks of silver nanowires. Micromachines 9:295. https://doi.org/10.3390/mi9060295

    Article  Google Scholar 

  40. Khan A, Viet Huong N, Munoz Rojas D, Aghazadehchors S, Jimenez C, Ngoc Duy N, Bellet D (2018) Stability enhancement of silver nanowire networks with conformal ZnO coatings deposited by atmospheric pressure spatial atomic layer deposition. ACS Appl Mater Interfaces 10:19208–19217. https://doi.org/10.1021/acsami.8b03079

    Article  CAS  Google Scholar 

  41. Liu GS, He M, Wang T, Wang L, He Z, Zhan R, Chen L, Chen Y, Yang BR, Luo Y, Chen Z (2020) Optically programmable Plateau–Rayleigh instability for high-resolution and scalable morphology manipulation of silver nanowires for flexible optoelectronics. ACS Appl Mater Interfaces 12:53984–53993. https://doi.org/10.1021/acsami.0c11682

    Article  CAS  Google Scholar 

  42. Shanker R, Cho S, Choe A, Kim MP, Khan Z, Kang S, Ko H (2019) Solution-processable, high-performance flexible electroluminescent devices based on high-k nanodielectrics. Adv Funct Mater 29:1904377. https://doi.org/10.1002/adfm.201904377

    Article  CAS  Google Scholar 

  43. Bid A, Bora A, Raychaudhuri AK (2006) Temperature dependence of the resistance of metallic nanowires of diameter >= 15 nm: applicability of Bloch–Gruneisen theorem. Physical Review B 74:035426. https://doi.org/10.1103/PhysRevB.74.079903

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 62204089), the Scientific Research Funds of Huaqiao University (21BS132), the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (ZQN-1124) and the National Key R&D Program of China (No.2021YFB3600104).

Author information

Authors and Affiliations

Authors

Contributions

YW: Conceptualization, Data curation, Validation, Writing—Original draft preparation, Experimental operation, Reviewing and Editing. GC: Experimental operation, Sample measurement and Analyze. XZ: Conceptualization, Supervision, Reviewing and Editing, Project administration. YZ: Investigation and Supervision. QY: Supervision, methodology, Reviewing. TG: Supervision and Validation.

Corresponding authors

Correspondence to Yalian Weng or **ongtu Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 17340 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, Y., Chen, G., Zhou, X. et al. Stability enhancement and patterning of silver nanowire networks by conformal TiO2 coating for flexible transparent conductive electrodes. J Mater Sci 58, 17816–17828 (2023). https://doi.org/10.1007/s10853-023-09152-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09152-5

Navigation