Log in

Theoretical investigation of fluorescent behavior for p- and n-type atomic-doped graphene quantum dots interacting with Hg (0)

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene quantum dots (GQDs) with heteroatomic do** have emerged as a new type of fluorescent probing nanomaterials. The critical point of the application is the precise recognition of the controlling mechanism for varied fluorescent behavior. Herein, density functional theory simulation was performed to investigate the fluorescent behavior of p- and n-type heteroatomic edge-doped GQDs. The n-type (nitrogen)-doped GQDs generally have not shown an obvious fluorescent change with the Hg atom adsorption. However, the p-type (boron)-doped GQDs show a fluorescence red-shift beyond the visible light spectrum accompanied by a weak oscillator strength. This unique fluorescent quenching suggests that the p-type do** could probably have a probing function for elemental Hg. We also characterize the distinct fluorescent behavior for a series of GQDs with co-atomic pair do**. Natural transitional orbitals were applied to examine the energetic variation and electron–hole pair transition. The different photoluminescent phenomena could be ascribed to the differential orbital interactions between GQDs and Hg with varied charge transfers. Our simulation provides a novel insight into the fluorescent behavior of atomic-doped GQDs, which might be valuable for designing doped GQDs and exploring new optical probing applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Sk MA, Ananthanarayanan A, Huang L, Lim KH, Chen P (2014) Revealing the tunable photoluminescence properties of graphene quantum dots. J Mater Chem C 2:6954–6960

    Article  CAS  Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV et al (2005) Two-dimensional gas of massless dirac fermions in graphene. Nature 438:197–200

    Article  CAS  Google Scholar 

  3. Florian L, Christoph S, Joachim B (2009) Graphene quantum dots: beyond a dirac billiard. Phys Rev B 79:115423

    Article  Google Scholar 

  4. Lin LP, Rong MC, Luo F, Chen DM, Wang YR, Chen X (2014) Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. Trends Anal Chem 54:83–102

    Article  CAS  Google Scholar 

  5. Abbas A, Mariana LT, Phan AN (2018) Biomass-waste derived graphene quantum dots and their applications. Carbon 140:77–99

    Article  CAS  Google Scholar 

  6. Li NN, Li RY, Li ZJ, Yang YQ, Wang GL, Gu ZG (2019) Pentaethylenehexamine and histidine-functionalized graphene quantum dots for ultrasensitive fluorescence detection of microRNA with target and molecular beacon double cycle amplification strategy. Sens Actuators, B Chem 283:666–676

    Article  CAS  Google Scholar 

  7. Murugan N, Prakash M, Jayakumar M, Sundaramurthy A, Sundramoorthy AK (2019) Green synthesis of fluorescent carbon quantum dots from eleusine coracana and their application as a fluorescence ‘turn-off’ sensor probe for selective detection of Cu2+. Appl Surf Sci 476:468–480

    Article  CAS  Google Scholar 

  8. Mukherjee D, Das P, Kundu S, Mandal B (2022) Engineering of graphene quantum dots by varying the properties of graphene oxide for fluorescence detection of picric acid. Chemosphere 300:134432

    Article  CAS  Google Scholar 

  9. Demie K, Trevor PH, Che RS et al (2015) Electronic structure modification of ion implanted graphene: the spectroscopic signatures of p- and n-type do**. ACS Nano 9:11398–11407

    Article  Google Scholar 

  10. Li HM, Lee D, Qu D, Liu X, Ryu J, Seabaugh A, Yoo WJ (2015) Ultimate thin vertical p-n junction composed of two-dimensional layered molybdenum disulfide. Nat Commun 6:6564

    Article  CAS  Google Scholar 

  11. Yuan D, Liu W, Zhu X (2023) Efficient and air-stable n-type do** in organic semiconductors. Chem Soc Rev 52:3842–3872. https://doi.org/10.1039/d2cs01027e37183967

    Article  CAS  Google Scholar 

  12. Wang S, Zuo G, Kim J, Sirringhaus H (2022) Progress of conjugated polymers as emerging thermoelectric materials. Prog Polym Sci 129:101548

    Article  CAS  Google Scholar 

  13. Zhang Y, Zhao J, Sun H, Zhu Z, Zhang J, Liu Q (2018) B, N, S, Cl doped graphene quantum dots and their effects on gas-sensing properties of Ag-LaFeO3. Sens Actuators, B Chem 266:364–374

    Article  CAS  Google Scholar 

  14. Morales Narvaez E, Arben M (2012) Graphene oxide as an optical biosensing platform. Adv Mater 24:3298–3308

    Article  CAS  Google Scholar 

  15. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3n edn. Springer, New York, pp 27–61

    Book  Google Scholar 

  16. Liu ZY, Mo ZL, Liu NJ, Guo RB, Niu XH, Zhao P, Yang X (2020) One-pot synthesis of highly fluorescent boron and nitrogen co-doped graphene quantum dots for the highly sensitive and selective detection of mercury ions in aqueous media. J Photochem Photobiol, A 389:112255

    Article  CAS  Google Scholar 

  17. Yang Y, Zou T, Wang Z et al (2019) The fluorescent quenching mechanism of N and S co-Doped graphene quantum dots with Fe(3+) and Hg(2+) ions and their application as a novel fluorescent sensor. Nanomaterials 9(5):738

    Article  CAS  Google Scholar 

  18. Yeh PC, Yoon S, Kurniawan D, Chung YG, Chiang WH (2021) Unraveling the fluorescence quenching of colloidal graphene quantum dots for selective metal ion detection. ACS Appl Nano Mater 4:5636–5642

    Article  CAS  Google Scholar 

  19. Hanaoka K, Iwaki S, Yagi K et al (2022) General design strategy to precisely control the emission of fluorophores via a twisted intramolecular charge transfer (TICT) process. J Am Chem Soc 144:19778–19790

    Article  CAS  Google Scholar 

  20. Feng J, Dong H, Pang B, Shao F, Zhang C, Yu L, Dong L (2018) Theoretical study on the optical and electronic properties of graphene quantum dots doped with heteroatoms. Phys Chem Chem Phys 20:15244–15252

    Article  CAS  Google Scholar 

  21. Rani P, Dalal R, Srivastava S (2023) Effect of surface modification on optical and electronic properties of graphene quantum dots. Appl Surf Sci 609:155379

    Article  CAS  Google Scholar 

  22. Zhang JJ, Ma J, Feng XL (2022) Precision synthesis of boron-doped graphene nanoribbons: recent progress and perspectives. Macromol Chem Phys 224:2200232

    Article  Google Scholar 

  23. Chen C, Lu J, Lv Y et al (2022) Heteroatom-edged [4] triangulene: facile synthesis and two-dimensional on-surface self-assemblies. Angew Chem Int Ed 61:e202212594

    Article  CAS  Google Scholar 

  24. Lee W, Bae GN (2009) Removal of elemental mercury (Hg(0)) by nanosized V2O5/TiO2 catalysts. Environ Sci Technol 43:1522–1527

    Article  CAS  Google Scholar 

  25. Xu YF, Tang HJ, Liu LM, Hua M, Chen KX, Duan YF (2022) Hierarchical Fe/ZSM-5 zeolites for efficient Hg0 removal from coal-fired flue gas. Chem Eng J 450:138180

    Article  CAS  Google Scholar 

  26. Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351

    Article  CAS  Google Scholar 

  27. Kim KH, Kabir E, Jahan SA (2016) A review on the distribution of Hg in the environment and its human health impacts. J Hazard Mater 306:376–385

    Article  CAS  Google Scholar 

  28. Brombach CC, Pichler T (2019) Determination of ultra-low volatile mercury concentrations in sulfur-rich gases and liquids. Talanta 199:277–284

    Article  CAS  Google Scholar 

  29. Evan JG, Henry WP, Richard AH (2000) Novel sorbents for mercury removal from flue gas. Ind Eng Chem Res 39:1020–1029

    Article  Google Scholar 

  30. He CL, Cheng GL, Zheng CB, Wu L, Lee Y, Hou XD (2015) Photochemical vapor generation and in situ preconcentration for determination of mercury by graphite furnace atomic absorption spectrometry. Anal Methods 7:3015–3021

    Article  CAS  Google Scholar 

  31. Liu T, Liu J, Mao X, Huang X, Qian Y (2023) Novel platinum-nickel composite trap for simultaneous and direct determination of mercury and cadmium in soil and its mechanism study. Anal Chem 95:594–601

    CAS  Google Scholar 

  32. Gu H, Hao L, Ye H, Ma P, Wang Z (2021) Nuclease-assisted target recycling signal amplification strategy for graphene quantum dot-based fluorescent detection of marine biotoxins. Microchim Acta 188:1–9

    Article  Google Scholar 

  33. Huang JT, Liu Y, Lai ZH, Hu J, Zhou F, Zhu JC (2022) Electronic structure and optical properties of non-metallic modified graphene: a first-principles study. Commun Theor Phys 74:035501

    Article  Google Scholar 

  34. Sung K, Sung Won H, Min Kook K et al (2012) Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano 6:8203–8208

    Article  Google Scholar 

  35. Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, Van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967

    Article  Google Scholar 

  36. Devlin FJ, Stephens PJ, Cheeseman JR, Frisch MJ (1997) Ab initio prediction of vibrational absorption and circular dichroism spectra of chiral natural products using density functional theory: camphor and fenchone. J Phys Chem A 101:6322–6333

    Article  CAS  Google Scholar 

  37. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the dam** function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  Google Scholar 

  38. Van Lenthe E, Baerends EJ (2003) Optimized slater-type basis sets for the elements 1–118. J Comput Chem 24:1142–1156

    Article  Google Scholar 

  39. Van Lenthe E, Ehlers A, Baerends EJ (1999) Geometry optimizations in the zero order regular approximation for relativistic effects. J Chem Phys 110:8943–8953

    Article  Google Scholar 

  40. Darvish Ganji M, Hosseini Khah SM, Amini Tabar Z (2015) Theoretical insight into hydrogen adsorption onto graphene: a first-principles B3LYP-D3 study. Phys Chem Chem Phys 17:2504–2511

    Article  CAS  Google Scholar 

  41. Yuan K, Zhao RS, Zheng JJ et al (2017) Van der waals heterogeneous layer-layer carbon nanostructures involving pi···H-C-C-H···pi···H-C-C-H stacking based on graphene and graphane sheets. J Comput Chem 38:730–739

    Article  CAS  Google Scholar 

  42. Miao SS, Xu ZJ, Yang XN (2020) DFT study of non-covalent interaction mechanisms of solvents with GO surfaces and the solvent-mediated GO interaction. Appl Surf Sci 499:143926

    Article  CAS  Google Scholar 

  43. Lu YS, Huang LJ, Guo YN, Yang XN (2021) Theoretical insights into origin of graphene oxide acidity and relating behavior of oxygen-containing groups in water. Carbon 183:355–361

    Article  CAS  Google Scholar 

  44. Kronik L, Stein T, Refaely Abramson S, Baer R (2012) Excitation gaps of finite-sized systems from optimally tuned range-separated hybrid functionals. J Chem Theory Comput 8:1515–1531

    Article  CAS  Google Scholar 

  45. Cooper DR, D’anjou B, Ghattamaneni N et al (2012) Experimental review of graphene. ISRN Condens Matter Phys. https://doi.org/10.5402/2012/501686

    Article  Google Scholar 

  46. So H, Martin HG (1999) Time-dependent density functional theory within the tamm-dancoff approximation. Chem Phys Lett 314:291–299

    Article  Google Scholar 

  47. Weerawardene KL, Aikens CM (2016) Theoretical insights into the origin of photoluminescence of Au25(SR)18- nanoparticles. J Am Chem Soc 138:11202–11210

    Article  CAS  Google Scholar 

  48. Meng Z, Yang X, Li H (2022) DFT-based theoretical simulation on electronic transition for graphene oxides in solvent media. J Mol Liq 348:118049

    Article  CAS  Google Scholar 

  49. Bader RFW (1985) Atoms in molecules. Acc Chem Res 18:9–15

    Article  CAS  Google Scholar 

  50. Mitoraj MP, Michalak A, Ziegler T (2009) On the nature of the agostic bond between metal centers and β-Hydrogen atoms in alkyl complexes. An analysis based on the extended transition state method and the natural orbitals for chemical valence scheme (ETS-NOCV). Organometallics 28:3727–3733

    Article  CAS  Google Scholar 

  51. Etienne T (2015) Transition matrices and orbitals from reduced density matrix theory. J Chem Phys 142:244103

    Article  Google Scholar 

  52. Li HL, Zu HX, Yang ZQ, Yang JP, Xu H, Qu WQ (2021) The adsorption mechanisms of Hg0 on marcasite-type metal selenides: the influences of metal-terminated site. Chem Eng J 406:126723

    Article  CAS  Google Scholar 

  53. Sun SJ, Zhang DS, Li CY, Wang YJ, Yang QS (2014) Density functional theory study of mercury adsorption and oxidation on CuO(111) surface. Chem Eng J 258:128–135

    Article  CAS  Google Scholar 

  54. Dai X, Zhou X, Liu H, Wang T, Zhang Y, Zhang H, Sun B (2021) Molecular-level insights into the immobilization of vapor-phase mercury on Fe/Co/Ni-doped hierarchical molybdenum selenide. J Hazard Mater 420:126583

    Article  CAS  Google Scholar 

  55. Liu Z, Zhang YL, Wang BY, Cheng H, Cheng XR, Huang ZC (2018) DFT study on Al-doped defective graphene towards adsorption of elemental mercury. Appl Surf Sci 427:547–553

    Article  CAS  Google Scholar 

  56. Li X, Cao X (2018) On the covalence in H2-AuX (X=F-I). Int J Hydrogen Energy 43:1709–1717

    Article  CAS  Google Scholar 

  57. Su P, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys 131:014102

    Article  Google Scholar 

  58. Chen L, Guo Y, Xu Z, Yang X (2018) Multiscale simulation of the interaction and adsorption of ions on a hydrophobic graphene surface. ChemPhysChem 19:2954–2960

    Article  CAS  Google Scholar 

  59. Guo J, Yang Y, Dou C, Wang Y (2021) Boron-containing organic diradicaloids: dynamically modulating singlet diradical character by lewis acid-base coordination. J Am Chem Soc 143:18272–18279

    Article  CAS  Google Scholar 

  60. Ito M, Shirai S, **e Y et al (2022) Fluorescent organic pi-radicals stabilized with boron: featuring a SOMO-LUMO electronic transition. Angew Chem Int Ed 61:e202201965

    Article  CAS  Google Scholar 

  61. Zia MA, Baig MA (2004) Two-step laser optogalvanic spectroscopy of the odd-parity rydberg states of atomic mercury. Eur Phys J D 28:323–330

    Article  CAS  Google Scholar 

  62. Zhao ZY, Zhang XL, Song XD, Hao C (2021) Fluorescence quenching mechanism of 9-hydroxyphenal-1-one carbon quantum dots by Cu2+ ions: an experimental and computational investigation. J Photochem Photobiol A 408:113103

    Article  CAS  Google Scholar 

  63. Englman R, Jortner J (1970) The energy gap law for radiationless transitions in large molecules. Mol Phys 18:145–164

    Article  CAS  Google Scholar 

  64. Chen S, Ullah N, Zhao Y, Zhang R (2019) Nonradiative excited-state decay via conical intersection in graphene nanostructures. ChemPhysChem 20:2754–2758

    Article  CAS  Google Scholar 

  65. Chen S, Ullah N, Wang T, Zhang R (2018) Tuning the optical properties of graphene quantum dots by selective oxidation: a theoretical perspective. J Mater Chem C 6:6875–6883

    Article  CAS  Google Scholar 

  66. Feng JG, Dong HZ, Pang BL, Chen YJ, Yu LY, Dong LF (2019) Tuning the electronic and optical properties of graphene quantum dots by selective boronization. J Mater Chem C 7:237–246

    Article  CAS  Google Scholar 

  67. Zhang Q, Zhou YL, Yu YB, Chen BY, Hong JM (2020) Exploring catalytic performance of boron-doped graphene electrode for electrochemical degradation of acetaminophen. Appl Surf Sci 508:145111

    Article  CAS  Google Scholar 

  68. Mortazavi B, Javvaji B, Shojaei F, Rabczuk T, Shapeev AV, Zhuang X (2021) Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles. Nano Energy 82:105716

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 21676136. The computational resources generously provided by High Performance Computing Center of Nan**g Tech University are greatly appreciated.

Funding

National Natural Science Foundation of China, 21676136, **aoning Yang

Author information

Authors and Affiliations

Authors

Contributions

ZM contributed to formal analysis, investigation, data curation, and writing—original draft. ZX contributed to formal analysis and investigation. XY contributed to conceptualization, project administration, investigation, methodology, and writing—original draft.

Corresponding author

Correspondence to **aoning Yang.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Ethical approval

This paper does not involve experiments on ethical issues.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10853_2023_9114_MOESM1_ESM.docx

Supplementary Tables S1-S3 and Figs. S1-S13 include detailed composition and electron distribution of HOMO and LUMO in pristine GQDs, the fluorescent spectra, and NTOs patterns of GQDs with Hg adsorption. (DOCX 14193 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Z., Xu, Z. & Yang, X. Theoretical investigation of fluorescent behavior for p- and n-type atomic-doped graphene quantum dots interacting with Hg (0). J Mater Sci 58, 17527–17542 (2023). https://doi.org/10.1007/s10853-023-09114-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09114-x

Navigation