Log in

A simulation study on the effect of polymer–NP interaction strength on the glass transition temperature and phase separation in polymer nanocomposites

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The impact of the interaction strength between polymer and nanoparticles (NPs), εNP, on the glass transition temperature, Tg, and the phase separation in polymer nanocomposites (PNCs) is explored by employing molecular dynamics simulations. The variation of the Tg with respect to εNP shows interesting behaviors at low and high-volume fractions of nanoparticles (fNP). For εNP < 2, the Tg curves seem to diverge, whereas for εNP > 2, they almost coincide. Interestingly, no sign of any phase separation is witnessed in the investigated PNCs at low fNP. However, at high fNP, obvious phase separation is noticed for low εNP. For both cases, there is no phase separation for εNP > 2. The measurement of the diffusion constants also reveals that the polymer dynamics become independent of the volume fraction of NPs for εNP > 2. We strongly recommend considering this critical value of εNP to avoid phase separation and Tg instability in the case of a high-volume fraction of NPs incorporated into PNCs. Briefly, different behaviors of Tg as the interaction strength between nanoparticles and polymer is increased in relevance to different inserted volume fractions of NPs are observed. Thus, the findings of this work could yield a high impact on the experimental techniques implemented in the fabrication and characterization of NPs–Polymers nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Brazil)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The data will be available upon reasonable request from corresponding authors.

References

  1. Gupta M, Wong W (2015) Magnesium-based nanocomposites: Lightweight materials of the future. Mater Charact 105:30–46

    Article  CAS  Google Scholar 

  2. Ma Q, Hao B, Ma P-C (2020) Flexible sensor based on polymer nanocomposites reinforced by carbon nanotube foam derivated from cotton. Compos Sci Technol 192:108103–108111

    Article  CAS  Google Scholar 

  3. Sahu PK, Pandey RK, Dwivedi R, Mishra V, Prakash R (2020) Polymer/Graphene oxide nanocomposite thin film for NO2 sensor: an in situ investigation of electronic, morphological, structural, and spectroscopic properties. Sci Rep 10(1):1–13

    Article  Google Scholar 

  4. Rathod VT, Kumar JS, Jain A (2017) Polymer and ceramic nanocomposites for aerospace applications. Appl Nanosci 7:519–548

    Article  CAS  Google Scholar 

  5. Müller C (2015) On the glass transition of polymer semiconductors and its impact on polymer solar cell stability. Chem Mater 27(8):2740–2754

    Article  Google Scholar 

  6. Gilman JW et al (2000) Flammability properties of polymer− layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mater 12(7):1866–1873

    Article  CAS  Google Scholar 

  7. González-Irún Rodríguez J, Carreira P, García-Diez A, Hui D, Artiaga R, Liz-Marzán L (2007) Nanofiller effect on the glass transition of a polyurethane. J Therm Anal Calorimet 87(1):45–47

    Article  Google Scholar 

  8. Cao F, Jana SC (2007) Nanoclay-tethered shape memory polyurethane nanocomposites. Polymer 48(13):3790–3800

    Article  CAS  Google Scholar 

  9. Larsen RJ, Zukoski CF (2011) Effect of particle size on the glass transition. Phys Rev E 83(5):051504–051521

    Article  Google Scholar 

  10. Arceo A, Meli L, Green PF (2008) Glass transition of polymer− nanocrystal thin film mixtures: role of entropically directed forces on nanocrystal distribution. Nano Lett 8(8):2271–2276

    Article  CAS  Google Scholar 

  11. Chandran S, Basu J (2011) Effect of nanoparticle dispersion on glass transition in thin films of polymer nanocomposites. The Eur Phys J E 34(99):1–5

    Google Scholar 

  12. Sahu PK, Pandey RK, Dwivedi R, Mishra VN, Prakash R (2020) Polymer/Graphene oxide nanocomposite thin film for NO2 sensor: an in situ investigation of electronic, morphological, structural, and spectroscopic properties. Sci Rep 10(1):2981–2985. https://doi.org/10.1038/s41598-020-59726-5

    Article  CAS  Google Scholar 

  13. Khan RAA, Qi H-K, Huang J-H, Luo M-B (2021) A simulation study on the effect of nanoparticle size on the glass transition temperature of polymer nanocomposites. Soft Matter 35(17):8095–8104

    Article  CAS  Google Scholar 

  14. Khan RAA, Luo M-B, Alsaad  A-M, Qattan I-A, Abedrabbo S, Hua D, Zulfqar A (2023) The role of polymer chain stiffness and guest nanoparticle loading in improving the glass transition temperature of polymer nanocomposites. Nanomaterials 13(13):1896. https://doi.org/10.3390/nano13131896

    Article  CAS  Google Scholar 

  15. Dong C, Zheng W, Wang L, Zhen W, Zhao L (2021) Insight into glass transition temperature and mechanical properties of PVA/TRIS functionalized graphene oxide composites by molecular dynamics simulation. Mater Des 206:109770–109778

    Article  CAS  Google Scholar 

  16. Serenko OA, Roldughin VI, Askadskii AA, Serkova ES, Strashnov PV, Shifrina ZB (2017) The effect of size and concentration of nanoparticles on the glass transition temperature of polymer nanocomposites. RSC Adv 7(79):50113–50120

    Article  CAS  Google Scholar 

  17. Cheng S et al (2017) Big effect of small nanoparticles: a shift in paradigm for polymer nanocomposites. ACS Nano 11(1):752–759

    Article  CAS  Google Scholar 

  18. Emamy H, Kumar SK, Starr FW (2018) Diminishing interfacial effects with decreasing nanoparticle size in polymer-nanoparticle composites. Phys Rev Lett 121(20):207801–207805

    Article  CAS  Google Scholar 

  19. Abd El-Fattah M, El Saeed AM, El-Ghazawy RA (2019) Chemical interaction of different sized fumed silica with epoxy via ultrasonication for improved coating. Prog Org Coat 129:1–9

    Article  Google Scholar 

  20. Khan RAA, Chen X, Qi H-K, Huang J-H, Luo M-B (2021) A novel shift in the glass transition temperature of polymer nanocomposites: a molecular dynamics simulation study. Phys Chem Chem Phys 23(21):12216–12225

    Article  CAS  Google Scholar 

  21. Rittigstein P, Torkelson JM (2006) Polymer–nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging. J Polym Sci Part B: Polym Phys 44(20):2935–2943

    Article  CAS  Google Scholar 

  22. Starr FW, Douglas JF, Meng D, Kumar SK (2016) Bound layers “cloak” nanoparticles in strongly interacting polymer nanocomposites. ACS Nano 10(12):10960–10965

    Article  CAS  Google Scholar 

  23. Pazmiño Betancourt BA, Douglas JF, Starr FW (2013) Fragility and cooperative motion in a glass-forming polymer–nanoparticle composite. Soft Matter 9:241–254. https://doi.org/10.1039/C2SM26800K

    Article  Google Scholar 

  24. Iyer P, Coleman MR (2008) Thermal and mechanical properties of blended polyimide and amine-functionalized poly (orthosiloxane) composites. J Appl Polym Sci 108(4):2691–2699

    Article  CAS  Google Scholar 

  25. Moll J, Kumar SK (2012) Glass transitions in highly attractive highly filled polymer nanocomposites. Macromolecules 45(2):1131–1135. https://doi.org/10.1021/ma202218x

    Article  CAS  Google Scholar 

  26. Khan RAA et al (2023) Improvement of the glass transition temperature in novel molybdenum carbide doped polyaniline nanocomposites. Ceram Int. 49 (16):26322–26330. https://doi.org/10.1016/j.ceramint.2023.05.158

    Article  CAS  Google Scholar 

  27. Kremer K, Grest GS (1990) Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J Chem Phys 92(8):5057–5086

    Article  CAS  Google Scholar 

  28. Tsehay DA, Luo M (2018) Static and dynamic properties of a semiflexible polymer in a crowded environment with randomly distributed immobile nanoparticles. PCCP 20(14):9582–9590

    Article  CAS  Google Scholar 

  29. Gersappe D (2002) Molecular mechanisms of failure in polymer nanocomposites. Phys Rev Lett 89(5):058301–058304

    Article  Google Scholar 

  30. Goswami M, Sumpter BG (2009) Effect of polymer-filler interaction strengths on the thermodynamic and dynamic properties of polymer nanocomposites. J Chem Phys 130(13):134910–134921

    Article  Google Scholar 

  31. You W, Yu W, Zhou C (2017) Cluster size distribution of spherical nanoparticles in polymer nanocomposites: rheological quantification and evidence of phase separation. Soft Matter 13(22):4088–4098

    Article  CAS  Google Scholar 

  32. Sorichetti V, Hugouvieux V, Kob W (2018) Structure and dynamics of a polymer–nanoparticle composite: effect of nanoparticle size and volume fraction. Macromolecules 51(14):5375–5391

    Article  CAS  Google Scholar 

  33. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  34. Bharadwaj R, Berry R, Farmer B (2000) Molecular dynamics simulation study of norbornene–POSS polymers. Polymer 41(19):7209–7221

    Article  CAS  Google Scholar 

  35. Yani Y, Lamm MH (2009) Molecular dynamics simulation of mixed matrix nanocomposites containing polyimide and polyhedral oligomeric silsesquioxane (POSS). Polymer 50(5):1324–1332

    Article  CAS  Google Scholar 

  36. Wang H, Hor JL, Zhang Y, Liu T, Lee D, Fakhraai Z (2018) Dramatic increase in polymer glass transition temperature under extreme nanoconfinement in weakly interacting nanoparticle films. ACS Nano 12(6):5580–5587

    Article  CAS  Google Scholar 

  37. Cangialosi D (2014) Dynamics and thermodynamics of polymer glasses. J Phys: Condens Matter 26(15):153101–153119

    CAS  Google Scholar 

  38. Rahman MS, Al-Marhubi IM, Al-Mahrouqi A (2007) Measurement of glass transition temperature by mechanical (DMTA), thermal (DSC and MDSC), water diffusion and density methods: a comparison study. Chem Phys Lett 440(4–6):372–377

    Article  CAS  Google Scholar 

  39. Binder K, Baschnagel J, Bennemann C, Paul W (1999) Monte Carlo and molecular dynamics simulation of the glass transition of polymers. J Phys: Condens Matter 11(10A):A47–A55

    CAS  Google Scholar 

  40. Pan D, Sun Z-Y (2018) Diffusion and relaxation dynamics of supercooled polymer melts. Chin J Polym Sci 36:1187–1194

    Article  Google Scholar 

  41. Rittigstein P, Torkelson JM (2006) Polymer–nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging. J Polym Sci, Part B: Polym Phys 44(20):2935–2943

    Article  CAS  Google Scholar 

  42. Desai T, Keblinski P, Kumar SK (2005) Molecular dynamics simulations of polymer transport in nanocomposites. J Chem Phys 122(13):134910–134918

    Article  Google Scholar 

  43. Huang J-C, He C-B, **ao Y, Mya KY, Dai J, Siow YP (2003) Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties. Polymer 44(16):4491–4499

    Article  CAS  Google Scholar 

  44. Wahab MA, Kim I, Ha C-S (2003) Microstructure and properties of polyimide/poly (vinylsilsesquioxane) hybrid composite films. Polymer 44(16):4705–4713

    Article  CAS  Google Scholar 

  45. **ong M, You B, Zhou S, Wu L (2004) Study on acrylic resin/titania organic–inorganic hybrid materials prepared by the sol–gel process. Polymer 45(9):2967–2976

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number (RGP2/335/44). The Fifth author would like to acknowledge the financial support provided by the deanship of scientific research at Jordan university of science and technology, Irbid-Jordan (grant number 20200401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Bo Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Mohammad Naraghi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R.A.A., Alsaad, A.M., Zulfqar, A. et al. A simulation study on the effect of polymer–NP interaction strength on the glass transition temperature and phase separation in polymer nanocomposites. J Mater Sci 58, 16942–16953 (2023). https://doi.org/10.1007/s10853-023-09074-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09074-2

Navigation