Log in

Antifouling performance of d-enantiomers-based peptide-modified aluminum alloy surfaces with enhanced stability against proteolytic degradation

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Marine biofouling presents a significant challenge to the sustainable development of the maritime industry. Antimicrobial peptide (AMP) offers a promising strategy to combat biofouling. However, the inherent susceptibility of natural AMPs composed of L-amino acids to proteolytic degradation limits their practical application. This study investigated the stability of peptides containing d-amino acids against proteolytic degradation and evaluated their antifouling performance through the modification of aluminum-based surfaces with these peptides. d-peptides exhibited remarkable stability compared to the l-peptides counterpart when exposed to pepsin. Furthermore, the surfaces modified with d-peptides displayed excellent antifouling capacity by significantly inhibiting the adhesion of Bacillus sp. (58.6%) and E. coli (88.7%), the comparable effects observed with l-peptides (61.7%) and (87.5%), respectively. Coarse-grained molecular dynamics simulations and scanning electron microscopy results analyses revealed that immobilized d-peptides effectively disrupted bacterial cell membranes, thereby preventing bacterial adhesion. This research provided a viable approach to enhance the stability of peptides against proteolytic degradation while maintaining outstanding antifouling performance, contributing to the development of effective strategies for antifouling in the maritime industry.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data and code availability

Data will be made available on request.

References

  1. Guo YH, Zhao WJ, Yan ML, Qiu JB (2022) Foaming process-induced porous silicone-based organogel for low biofouling adhesion with improved long-term stability. Prog Org Coat 167:106864. https://doi.org/10.1016/j.porgcoat.2022.106864

    Article  CAS  Google Scholar 

  2. Tong ZM, Song LN, Chen SF, Hu JK, Hou Y, Liu Q, Ren YY, Zhan XL, Zhang QH (2022) Hagfish-inspired smart SLIPS marine antifouling coating based on supramolecular: lubrication modes responsively switching and self-healing properties. Adv Funct Mater 32:2201290. https://doi.org/10.1002/adfm.202201290

    Article  CAS  Google Scholar 

  3. He XY, Lou T, Cao P, Bai XQ, Yuan CQ, Wang C, Neville A (2021) Experimental and molecular dynamics simulation study of chemically stable superhydrophobic surfaces. Surf Coat Technol 418:127236. https://doi.org/10.1016/j.surfcoat.2021.127236

    Article  CAS  Google Scholar 

  4. Schultz MP (2007) Effects of coating roughness and biofouling on ship resistance and powering. Biofouling 23:331–341. https://doi.org/10.1080/08927010701461974

    Article  Google Scholar 

  5. Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104. https://doi.org/10.1016/j.porgcoat.2003.06.001

    Article  CAS  Google Scholar 

  6. Qiu HY, Feng K, Gapeeva A, Meurisch K, Kaps S, Li X, Yu LM, Mishra YK, Adelung R, Baum M (2022) Functional polymer materials for modern marine biofouling control. Prog Polym Sci 127:101516. https://doi.org/10.1016/j.progpolymsci.2022.101516

    Article  CAS  Google Scholar 

  7. Sahin F, Celik N, Ceylan A, Pekdemir S, Ruzi M, Onses MS (2022) Antifouling superhydrophobic surfaces with bactericidal and SERS activity. Chem Eng J 431:133445. https://doi.org/10.1016/j.cej.2021.133445

    Article  CAS  Google Scholar 

  8. Gu YQ, Yu LZ, Mou JG, Wu DH, Xu MS, Zhou PJ, Ren Y (2020) Research strategies to develop environmentally friendly marine antifouling coatings. Mar Drugs 18:371. https://doi.org/10.3390/md18070371

    Article  CAS  Google Scholar 

  9. Melrose J (2019) Mucin-like glycopolymer gels in electrosensory tissues generate cues which direct electrolocation in amphibians and neuronal activation in mammals. Neural Regen Res 14:1191–1195. https://doi.org/10.4103/1673-5374.251298

    Article  CAS  Google Scholar 

  10. He XY, Lou T, Yang ZC, Bai XQ, Yuan CQ, Wang C, Neville A (2021) Lubricant-infused titania surfaces with high underwater transparency for antifouling applications: a combined experimental and molecular dynamics study. Appl Surf Sci 543:148848. https://doi.org/10.1016/j.apsusc.2020.148848

    Article  CAS  Google Scholar 

  11. Yang ZC, He XY, Chang JF, Bai XQ, Cao P, Yuan CQ (2021) Fabrication of biomimetic slippery liquid-infused porous surface on 5086 aluminum alloy with excellent antifouling performance. Surf Interface Anal 53:147–155. https://doi.org/10.1002/sia.6894

    Article  CAS  Google Scholar 

  12. Yang ZC, He XY, Chang JF, Yuan CQ, Bai XQ (2021) Facile fabrication of fluorine-free slippery lubricant-infused cerium stearate surfaces for marine antifouling and anticorrosion application. Surf Coat Technol 415:127136. https://doi.org/10.1016/j.surfcoat.2021.127136

    Article  CAS  Google Scholar 

  13. **e QY, Pan JS, Ma CF, Zhang GZ (2019) Dynamic surface antifouling: Mechanism and systems. Soft Matter 15:1087–1107. https://doi.org/10.1039/c8sm01853g

    Article  CAS  Google Scholar 

  14. Selim MS, El-Safty SA, Shenashen MA, Higazy SA, Elmarakbi A (2020) Progress in biomimetic leverages for marine antifouling using nanocomposite coatings. J Mater Chem B 8:3701–3732. https://doi.org/10.1039/c9tb02119a

    Article  CAS  Google Scholar 

  15. Selim MS, Fatthallah NA, Higazy SA, Hao Z, Mo P (2022) A comparative study between two novel silicone/graphene-based nanostructured surfaces for maritime antifouling. J Colloid Interface Sci 606:367–383. https://doi.org/10.1016/j.jcis.2021.08.026

    Article  CAS  Google Scholar 

  16. Zheng LC, Sundaram HS, Wei ZY, Li CC, Yuan ZF (2017) Applications of zwitterionic polymers. React Funct Polym 118:51–61. https://doi.org/10.1016/j.reactfunctpolym.2017.07.006

    Article  CAS  Google Scholar 

  17. Cao P, Liu KW, Liu XD, Sun W, Wu DL, Yuan CQ, Bai XQ, Zhang C (2020) Antibacterial properties of Magainin II peptide onto 304 stainless steel surfaces: a comparison study of two dopamine modification methods. Colloids Surf B Biointerfaces 194:111198. https://doi.org/10.1016/j.colsurfb.2020.111198

    Article  CAS  Google Scholar 

  18. ** HC, Tian LM, Bing W, Zhao J, Ren LQ (2022) Bioinspired marine antifouling coatings: status, prospects, and future. Prog Mater Sci 124:100889. https://doi.org/10.1016/j.pmatsci.2021.100889

    Article  CAS  Google Scholar 

  19. Herzberg M, Berglin M, Eliahu S, Bodin L, Agrenius K, Zlotkin A, Svenson J (2021) Efficient prevention of marine biofilm formation employing a surface-grafted repellent marine peptide. ACS Appl Bio Mater 4:3360–3373. https://doi.org/10.1021/acsabm.0c01672

    Article  CAS  Google Scholar 

  20. Cahill P, Grant TM, Rennison D, Champeau O, Boundy M, Passfield E, Berglin M, Brimble MA, Svenson J (2023) Nature-inspired peptide antifouling biocide: coating compatibility, field validation, and environmental stability. ACS Appl Bio Mater 6:2415–2425. https://doi.org/10.1021/acsabm.3c00226

    Article  CAS  Google Scholar 

  21. Cao P, Liu D, Liu YH, Zhang Y, Yuan CQ, Zhang C (2021) Combining topography and peptide to inhibit algae attachment: preparation of peptide-modified microstructured surfaces. Surf Interface Anal 53:973–981. https://doi.org/10.1002/sia.7000

    Article  CAS  Google Scholar 

  22. Zhang DH, Cao CT, Chen Q, Liu JJ, Liu HJ, Liu Y, Yuan Y, Liu HL, Lin HD, Liu RH (2022) Antifouling zwitterionic poly-β-peptides. Appl Mater Today 27:101511. https://doi.org/10.1016/j.apmt.2022.101511

    Article  Google Scholar 

  23. Saha R, Bhattacharya D, Mukhopadhyay M (2022) Advances in modified antimicrobial peptides as marine antifouling material. Colloids Surf B Biointerfaces 220:112900. https://doi.org/10.1016/j.colsurfb.2022.112900

    Article  CAS  Google Scholar 

  24. Sakala GP, Reches M (2018) Peptide-based approaches to fight biofouling. Adv Mater Interfaces 5:1800073. https://doi.org/10.1002/admi.201800073

    Article  CAS  Google Scholar 

  25. Qiu S, Zhu RR, Zhao YY, An XP, Jia FJ, Peng JX, Ma ZL, Zhu YY, Wang JY, Su JH, Wang QJ, Wang HL, Li Y, Wang KR, Yan WJ, Wang R (2017) Antimicrobial activity and stability of protonectin with D-amino acid substitutions. J Pept Sci 23:392–402. https://doi.org/10.1002/psc.2989

    Article  CAS  Google Scholar 

  26. Tugyi R, Uray K, Ivan D, Fellinger E, Perkins A, Hudecz F (2005) Partial D-amino acid substitution: improved enzymatic stability and preserved Ab recognition of a MUC2 epitope peptide. Proc Natl Acad Sci USA 102:413–418. https://doi.org/10.1073/pnas.0407677102

    Article  CAS  Google Scholar 

  27. Fetse J, Kandel S, Mamani UF, Cheng K (2023) Recent advances in the development of therapeutic peptides. Trends Pharmacol Sci 44:425–441. https://doi.org/10.1016/j.tips.2023.04.003

    Article  CAS  Google Scholar 

  28. You YH, Liu HY, Zhu YZ, Zheng H (2023) Rational design of stapled antimicrobial peptides. Amino Acids 55:421–442. https://doi.org/10.1007/s00726-023-03245-w

    Article  CAS  Google Scholar 

  29. Beyer CD, Reback ML, Heinen N, Thavalingam S, Rosenhahn A, Metzler-Nolte N (2020) Low fouling peptides with an all (D) amino acid sequence provide enhanced stability against proteolytic degradation while maintaining low antifouling properties. Langmuir 36:10996–11004. https://doi.org/10.1021/acs.langmuir.0c01790

    Article  CAS  Google Scholar 

  30. Aliashkevich A, Alvarez L, Cava F (2018) New insights into the mechanisms and biological roles of D-amino acids in complex eco-systems. Front Microbiol 9:683. https://doi.org/10.3389/fmicb.2018.00683

    Article  Google Scholar 

  31. Lou T, Bai XQ, He XY, Liu WC, Yang Y, Yuan CQ (2022) Antifouling performance and mechanism analysis of marine peptide modified aluminum alloy surface. Surf Coat Technol 445:128742. https://doi.org/10.1016/j.surfcoat.2022.128742

    Article  CAS  Google Scholar 

  32. Lou T, Bai XQ, He X, Liu W, Yang Z, Yang C, Yang Y, Yuan CQ (2023) Enhanced antifouling properties of marine antimicrobial peptides by PEGylation. Front Bioeng Biotech 11:1124389. https://doi.org/10.3389/fbioe.2023.1124389

    Article  Google Scholar 

  33. Dowhan W (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Microbiol 66:199–232. https://doi.org/10.1146/annurev.biochem.66.1.199

    Article  CAS  Google Scholar 

  34. Fang G, Li WF, Shen XM, Perez-Aguilar JM, Chong Y, Gao XF, Chai ZF, Chen CY, Ge CC, Zhou RH (2018) Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against gram-positive and gram-negative bacteria. Nat Commun 9:129. https://doi.org/10.1038/s41467-017-02502-3

    Article  CAS  Google Scholar 

  35. Wassenaar TA, Ingolfsson HI, Boeckmann RA, Tieleman DP, Marrink SJ (2015) Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J Chem Theory Comput 11:2144–2155. https://doi.org/10.1021/acs.jctc.5b00209

    Article  CAS  Google Scholar 

  36. Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750–760. https://doi.org/10.1021/jp036508g

    Article  CAS  Google Scholar 

  37. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4:819–834. https://doi.org/10.1021/ct700324x

    Article  CAS  Google Scholar 

  38. Souza PCT, Alessandri R, Barnoud J, Thallmair S, Faustino I, Grunewald F, Patmanidis I, Abdizadeh H, Bruininks BMH, Wassenaar TA, Kroon PC, Melcr J, Nieto V, Corradi V, Khan HM, Domanski J, Javanainen M, Martinez-Seara H, Reuter N, Best RB, Vattulainen I, Monticelli L, Periole X, Tieleman DP, de Vries AH, Marrink SJ (2021) Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat Methods 18:382–388. https://doi.org/10.1038/s41592-021-01098-3

    Article  CAS  Google Scholar 

  39. Alessandri R, Barnoud J, Gertsen AS, Patmanidis I, de Vries AH, Souza PCT, Marrink SJ (2022) Martini 3 coarse-grained force field: small molecules. Adv Theory Simul 5:2100391. https://doi.org/10.1002/adts.202100391

    Article  CAS  Google Scholar 

  40. Ke Q, Gong XT, Liao SW, Duan CX, Li LB (2022) Effects of thermostats/barostats on physical properties of liquids by molecular dynamics simulations. J Mol Liq 365:120116. https://doi.org/10.1016/j.molliq.2022.120116

    Article  CAS  Google Scholar 

  41. Carretero-Gonzalez R, Kevrekidis PG, Kevrekidis IG, Maroudas D, Frantzeskakis DJ (2005) A Parrinello-Rahman approach to vortex lattices. Phys Lett A 341:128–134. https://doi.org/10.1016/j.physleta.2005.04.046

    Article  CAS  Google Scholar 

  42. He X, Cao P, Tian F, Bai X, Yuan C (2019) Autoclaving-induced in-situ grown hierarchical structures for construction of superhydrophobic surfaces: a new route to fabricate antifouling coatings. Surf Coat Technol 357:180–188. https://doi.org/10.1016/j.surfcoat.2018.10.015

    Article  CAS  Google Scholar 

  43. Berisha A, Hazimeh H, Galtayries A, Decorse P, Kanoufi F, Combellas C, Pinson J, Podvorica FI (2016) Grafting of an aluminium surface with organic layers. RSC Adv 6:78369–78377. https://doi.org/10.1039/c6ra15313e

    Article  CAS  Google Scholar 

  44. Lan YD, Hiebner DW, Casey E (2021) Self-assembly and regeneration strategy for mitigation of membrane biofouling by the exploitation of enzymatic nanoparticles. Chem Eng J 412:128666. https://doi.org/10.1016/j.cej.2021.128666

    Article  CAS  Google Scholar 

  45. Govindan R, Banerjee P, Dhania NK, Senapati S (2021) FTIR based approach to study EnaC mechanosensory functions. Prog Biophys Mol Biol 167:79–86. https://doi.org/10.1016/j.pbiomolbio.2021.07.004

    Article  CAS  Google Scholar 

  46. Fang D, He F, **e JL, Xue LH (2020) Calibration of binding energy positions with C1s for XPS results. J Wuhan Univ Technol 35:711–718. https://doi.org/10.1007/s11595-020-2312-7

    Article  CAS  Google Scholar 

  47. He X, Liu Y, Bai X, Yuan C, Li H (2018) Alginate/albumin in incubation solution mediates the adhesion and biofilm formation of typical marine bacteria and algae. Biochem Eng J 139:25–32. https://doi.org/10.1016/j.bej.2018.08.006

    Article  CAS  Google Scholar 

  48. Cao P, He XY, **ao JF, Yuan CQ, Bai XQ (2018) Peptide-modified stainless steel with resistance capacity of Staphylococcus aureus biofilm formation. Surf Interface Anal 50:1362–1369. https://doi.org/10.1002/sia.6531

    Article  CAS  Google Scholar 

  49. Wirde M, Gelius U, Nyholm L (1999) Self-assembled monolayers of cystamine and cysteamine on gold studied by XPS and voltammetry. Langmuir 15:6370–6378. https://doi.org/10.1021/la9903245

    Article  CAS  Google Scholar 

  50. Mazumder MAJ (2019) Synthesis of polymers containing residues of biogenic amino acid methionine, methionine sulfoxide and methionine sulfone and their application as inhibitors of mild steel corrosion. Int J Electrochem Sci 14:1040–1068. https://doi.org/10.20964/2019.01.83

    Article  CAS  Google Scholar 

  51. Zequine C, Bhoyate S, Siam K, Kahol PK, Kostoglou N, Mitterer C, Hinder SJ, Baker MA, Constantinides G, Rebholz C, Gupta G, Li X, Gupta RK (2018) Needle grass array of nanostructured nickel cobalt sulfide electrode for clean energy generation. Surf Coat Technol 354:306–312. https://doi.org/10.1016/j.surfcoat.2018.09.045

    Article  CAS  Google Scholar 

  52. Magana M, Pushpanathan M, Santos AL, Leanse L, Fernandez M, Ioannidis A, Giulianotti MA, Apidianakis Y, Bradfute S, Ferguson AL, Cherkasov A, Seleem MN, Pinilla C, de la Fuente-Nunez C, Lazaridis T, Dai TH, Houghten RA, Hancock REW, Tegos GP (2020) The value of antimicrobial peptides in the age of resistance. Lancet Infect Dis 20:E216–E230. https://doi.org/10.1016/s1473-3099(20)30327-3

    Article  CAS  Google Scholar 

  53. Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29:464–472. https://doi.org/10.1016/j.tibtech.2011.05.001

    Article  CAS  Google Scholar 

  54. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250. https://doi.org/10.1038/nrmicro1098

    Article  CAS  Google Scholar 

  55. Naughton FB, Alibay I, Barnoud J, Barreto-Ojeda E, Beckstein O, Bouysset C, Cohen O, Gowers RJ, MacDermott-Opeskin H, Matta M, Melo MN, Reddy T, Wang L, Zhuang Y (2022) MDAnalysis 2.0 and beyond: fast and interoperable, community driven simulation analysis. Biophys J 121:272A-273A

    Article  Google Scholar 

  56. McMahon HT, Boucrot E (2015) Membrane curvature at a glance. J Cell Sci 128:1065–1070. https://doi.org/10.1242/jcs.114454

    Article  CAS  Google Scholar 

  57. Xu BM, Chen SL, Zhang YR, Li BF, Yuan QH, Gan W (2022) Evaluating the cross-membrane dynamics of a charged molecule on lipid films with different surface curvature. J Colloid Interface Sci 610:376–384. https://doi.org/10.1016/j.jcis.2021.12.015

    Article  CAS  Google Scholar 

  58. Bouvrais H, Meleard P, Pott T, Jensen KJ, Brask J, Ipsen JH (2008) Softening of POPC membranes by magainin. Biophys Chem 137:7–12. https://doi.org/10.1016/j.bpc.2008.06.004

    Article  CAS  Google Scholar 

  59. Guigas G, Weiss M (2006) Size-dependent diffusion of membrane inclusions. Biophys J 91:2393–2398. https://doi.org/10.1529/biophysj.106.087031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 52071246) and Innovation and Development Joint Fund Key Project of Hubei Provincial Natural Science Foundation (2022CFD029).

Author information

Authors and Affiliations

Authors

Contributions

TL involved in conceptualization, methodology, software, validation, formal analysis, investigation, original draft and review and editing; XB involved in review and editing, supervision and funding acquisition; XH involved in review and editing and supervision; WL involved in methodology and validation; ZY involved in methodology and validation; YY involved in review and editing; CY involved in review and editing and supervision.

Corresponding author

Correspondence to **uqin Bai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, T., Bai, X., He, X. et al. Antifouling performance of d-enantiomers-based peptide-modified aluminum alloy surfaces with enhanced stability against proteolytic degradation. J Mater Sci 58, 15499–15512 (2023). https://doi.org/10.1007/s10853-023-08960-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08960-z

Navigation